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A B S T R A C T   

Synergistic regulation of various agricultural resources in agricultural water-energy-food nexus systems is 
important for understanding the key regulatory processes and related synergistic relationships. However, 
regulation with the goal of multienergy interaction and coordination to adapt to environmental changes is 
extremely challenging. As a solution to the problem, an uncertainty-based modeling approach is proposed for the 
optimal regulation of water, soil and energy resources from a multienergy synergy perspective by integrating 
multiobjective nonlinear programming, left–right type fuzzy numbers and credibility programming into a 
framework. The approach aims to assess the interactions and synergistic relationships among biomass electrical 
energy, light energy, and hydroelectric energy, clarify the dynamic characteristics of resource allocation and 
socioeconomic and environmental effects, and capture the high uncertainty in the nexus area. This study con
tributes to the efficient and sustainable management of agricultural water, energy and land resources. The 
approach was tested and implemented based on a case study of Jinxi Irrigation District in China. The results 
reveal that there are trade-offs and games among the light use efficiency, hydroelectric energy and biomass 
energy, and their coordination enhances the system synergy among resources, the economy and the environment 
by 12.22%, with a 2.67% increase in the irrigation water use efficiency and a 4.92% increase in the energy use 
efficiency. Uncertainties significantly affect the synergy among multiple energies. More water will promote 
collaborative energy management, with the coordination development degree will increase by 2.20% when the 
water quantity increases by 4.16%, however, it accompanied higher water scarcity risks.   

1. Introduction 

Water, food, and energy are essential and closely related life support 
requirements for human well-being and sustainable development, and 
these requirements are closely interconnected [1]. For example, water is 
used to produce food and energy; energy is required to pump and 
distribute water and to manufacture, harvest, store, and transport food; 
and crop and food waste materials can be employed for energy pro
duction [2]. Continued global population growth places high demands 
on the water, energy and food (WEF) resources needed to maintain a 
healthy standard of living [3]. Agricultural production is the largest 
global water user, accounting for approximately 90% of global fresh
water consumption over the past century. Approximately 30% of global 

energy consumption originates from food production and supply [4]. 
Agricultural irrigation provides approximately 40% of the world’s food, 
and therefore, agricultural nexus management should be studied. 

There are currently many studies of agricultural nexus management 
[5]. Optimization models are very effective nexus management methods 
to quantify interactions and determine the optimal allocation of re
sources, such as agricultural land and water resources [6]. For example, 
Ma et al. [7] studied the synergistic management of water-food-ecology- 
energy systems and developed a bilevel decentralized chance- 
constrained programming water-food-ecology-energy model to obtain 
optimal management solutions regarding water allocation, food pro
duction, and power generation. Zuo et al. [8] investigated agricultural 
WEF and area management and developed a scenario-based type-2 fuzzy 
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interval programming-water-energy-food nexus (WEFN) model for 
agricultural net profit maximization to achieve synergistic resource 
allocation in a coupled WEF system. Zhang et al. [9] developed a so
cioeconomic model based on the WEFN framework to quantitatively 
analyze multidimensional indicators and assist decision makers in 
achieving economic efficiency. In contrast, most contemporary studies 
have been conducted by optimizing agricultural resources with the main 
objective of maximizing food production or the net profits originating 
from agriculture [10]. However, it is not sustainable to consider only 
food production or maximizing the net profitability of agriculture as the 
main goal. In the context of resource/energy scarcity, resource/energy 
use efficiency has received equal attention to save resources and pro
mote efficient agriculture. However, the existing studies on managing 
agricultural WEFN systems based on optimization modeling have 
generally not quantified or provided decision support for energy-related 
factors; notably, most researchers have established the relationships 
among elements in a WEFN for one energy type, such as electricity [11] 
or bioenergy [12]. 

In fact, energy is crucial in nexus systems and exists in many forms. 
The crop yield formation process and other growth stages require water 
uptake in the presence of solar radiation, which affects stomatal 
conductance and, consequently, light use efficiency [13]. Increasing the 
light use efficiency facilitates enhanced biomass accumulation in crops, 
which in turn increases food production. As such, food production de
pends on the light use efficiency [14]. In addition to light, crops also 
require electrical energy for water lifting, transport, irrigation and 
drainage in the crop formation process. Moreover, crops produce bio
waste such as straw in the yield formation process, thus providing the 
raw material for biomass energy production; notably, some biomass 
energy can be converted into biomass electrical energy through vapor
ization and combustion [15]. In agriculture WEFN systems, these forms 
of energy interact with each other, and there are trade-offs and games, 
and they are influenced by the utilization of agricultural resources, such 
as water, soil, and energy resources. In turn, the synergy among these 
three energy sources further affects the integrated allocation of agri
cultural resources and thus impacts food production. However, due to 
the ease of quantification, most of the existing agricultural WEFN opti
mization model studies focused on quantifying the utilization of elec
trical energy during the crop growth cycle. Since light use efficiency is 
associated with the dynamic process of the crop water cycle, which is 
complex to quantify and optimize in a modelling framework, existing 
models of agricultural WEFN rarely consider the light use efficiency 
during crop growth. In addition, some scholars have quantified the 
production potential of crop waste-based biomass energy during the 
crop life cycle in their modeling, often ignoring the ability of bioenergy 
to then further produce bioelectricity. Because bioelectricity is recy
clable in agricultural systems, quantifying this energy fraction is 
essential. Therefore, optimization models that account for agricultural 
WEFN systems and consider optimal agricultural water, soil, and energy 
resource regulation based on the synergy among light energy, biomass 
electrical energy, and electrical energy, are necessary and challenging to 
develop. 

In the process of water, soil and energy resource optimization in a 
coupled WEFN system, the transformation processes in the atmospheric 
water-surface water-soil water-groundwater cycle are involved. Specif
ically, surface water, soil water and groundwater are returned to the 
atmosphere through evaporation and become an important component 
of atmospheric water. Moreover, there is a constant exchange of water 
among surface water, soil water and groundwater and among areas in 
various regions [16]. These interactions influence the dynamic nature of 
water allocation in different growth stages, and considering them can 
lead to more accurate multiwater allocation schemes by dynamically 
reflecting the relationships among irrigation, precipitation, water con
sumption, and water demand in irrigation areas. 

In addition, from the perspective of data acquisition, the multienergy 
coordination models of agricultural WEFN involve large numbers of 

parameters that are obtained and processed from uncertain raw data. 
Varying observation and measurement accuracies, changing socioeco
nomic and natural conditions, and data integration uncertainty are 
attributed to fluctuations in model inputs. In particular, the quantifi
cation and synergy of multiple energy sources in an agricultural WEFN 
are closely related to the water cycle, and the relevant parameters 
dynamically change. To quantitatively reflect and address the uncer
tainty in the multienergy regulation of agricultural WEFN systems, un
certainty programming can be coupled with a nexus model. The classic 
uncertainty programming methods include stochastic mathematical 
programming (SMP), fuzzy mathematical programming (FMP) and in
terval mathematical programming (IMP). Each of these methods has 
distinct advantages and limitations. SMP can effectively handle a wide 
range of probabilistic uncertainties in decision making. However, the 
high computational data requirements for specifying parameter proba
bility distributions may affect the practical application of SMP methods. 
IMP has lower data requirements for handling uncertain parameters but 
may encounter difficulties when highly uncertain parameters are pre
sent on the right-hand side of model constraint equations. FMP can 
provide a good balance between data requirements and information 
accuracy. Multienergy coordination in an agricultural WEFN involves 
many parameters that are associated with weather, hydrology, 
agronomy, the economy and the environment. Thus, FMP is most 
appropriate for use in models in terms of the accurate expression of 
uncertainty and high computational efficiency. Most of the existing FMP 
literature has focused on triangular fuzzy numbers due to their simple 
form. LR-type fuzzy numbers are more common fuzzy numbers, and 
many types of fuzzy numbers, such as triangular, trapezoidal, and 
exponential, can be expressed with this formulation. LR-type fuzzy 
numbers have a broad application scope and can be used to quantify 
various uncertain parameters with different characteristics [17]. In 
addition, as a widely used fuzzy programming method, credibility pro
gramming, with the characteristic of self-duality, which can replace 
likelihood and necessity [18], is able to effectively address constraint- 
violation issues in multienergy coordination models because available 
water and energy are usually changing. Therefore, the integration of LR- 
type fuzzy numbers and the credibility constraint method is a potential 
approach to effectively manage the uncertainty in multi-energy synergy 
in the agricultural WEFN. 

Based on the above information, an optimal model of agricultural 
water and soil resource allocation is developed under complex fuzzy 
uncertainty from a multienergy synergy perspective (LR-FN-MONLP). 
This model combines LR-type fuzzy numbers and plausibility constraints 
into a multiobjective nonlinear programming method to achieve soil and 
water energy resource allocation for a WEFN based on the synergy 
among three energy sources (light energy, biomass electrical energy, 
and hydroelectric energy). This study explores the interactions and 
synergistic relations among biomass electrical energy, light energy, and 
hydroelectric energy in agricultural systems, and the results can effi
ciently and sustainably aid in the management of agricultural, water, 
energy and land resources from the perspective of multienergy coordi
nation considering environmental changes. This study includes the 
following steps: (1) The complex fuzzy uncertainties associated with the 
parameters and constraints in the LR-FN-MONLP model are quantified 
with LR-type fuzzy numbers and plausibility constraints. (2) A multi
objective nonlinear programming model with coupled water cycle 
equations and synergistic functions for light use efficiency, biomass 
electrical energy and hydroelectric energy utilization is established for 
the cooperative regulation and optimization of water, soil and energy 
resources. (3) The model is solved with possibilistic mean value-based, 
credibility constraint and normalization methods to analyze the dy
namic use of soil and water energy resources, the synergy among the 
above three energy sources and the corresponding socioeconomic- 
environmental effects. The model is subsequently applied in the Jinxi 
Irrigation District, Northeast China. 
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2. Method 

The framework of the LR-FN-MONLP model constructed in this paper 
includes a multiobjective nonlinear optimization model that in
corporates LR-type fuzzy numbers and plausibility constraints. Specif
ically, the model integrates LR-type fuzzy numbers and plausibility 
constraints into the main framework of multiobjective nonlinear 
programming. 

2.1. Multiobjective nonlinear programming 

The main framework of the LR-FN-MONLP model constructed in this 
paper is multiobjective nonlinear programming [19], which is used to 
address multiobjectivity and nonlinearity issues in optimization prob
lems and can be expressed as follows: 

Z = F(x1, x2,⋯, xn) =

⎛

⎜
⎜
⎝

max(min)f1(x1, x2,⋯, xn)

max(min)f2(x1, x2,⋯, xn)

⋮
max(min)fk(x1, x2,⋯, xn)

⎞

⎟
⎟
⎠ (1) 

subject to. 

H(x1, x2,⋯, xn) =

⎛

⎜
⎜
⎝

h1(x1, x2,⋯, xn)

h2(x1, x2,⋯, xn)

⋮
hm(x1, x2,⋯, xn)

⎞

⎟
⎟
⎠ = 0 (2)  

G(x1, x2,⋯, xn) =

⎛

⎜
⎜
⎝

g1(x1, x2,⋯, xn)

g2(x1, x2,⋯, xn)

⋮
gl(x1, x2,⋯, xn)

⎞

⎟
⎟
⎠⩾0 (3)  

x1, x2,⋯, xn⩾0 (4)  

where [x1, x2,⋯, xn]
T is the vector of decision variables. Z = F(x1, x2,⋯ 

, xn) is a k-dimensional function vector, and k is the number of scalar 
objective functions. H(x1, x2,⋯, xn) is an m-dimensional function vector, 
and m is the number of scalar constraints. G(x1, x2,⋯, xn) is an 
n-dimensional function vector, and n is the number of scalar constraints 
At least one of the functionsF(x1, x2,⋯, xn),H(x1, x2,⋯, xn), or G(x1, x2,

⋯, xn) is a non-linear function of the decision vector[x1, x2,⋯, xn]
T. 

2.2. Left-right type fuzzy numbers 

LR-type fuzzy numbers can resolve the problem of fuzzy variable 
quantification in optimization problems, and LR-type fuzzy numbers can 
be described with the following affiliation functions: 

A(u) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L
(q − u

α

)
, q − α⩽u⩽q

1 , u ∈
[
q, q
]

R
(

u − q
β

)

, q⩽u⩽q + β

0 , otherwise

(5)  

where 
[
q, q
]

is the peak ofA; q and q are the lower and upper modal 

values; andL,R : [0, 1]→[0,1], with L(0) = R(0) = 1 and L(1) = R(1) = 0 
being nonincreasing, continuous mappings. In this study, the nota

tionA =
(

q, q,α, β
)

LR
. The variables in parentheses represent the lower 

limit value, upper limit value, left extension, and right extension of LR- 
type fuzzy numbers. 

2.3. Credibility constraints 

The fuzzy credibility constraint planning method is a mathematical 

algorithm used to resolve the uncertainty in system model data and the 
inability to obtain an exact distribution of random data. According to the 
concept of plausibility, the probability of a fuzzy event can be expressed 
as follows: 

max
∑n

j=1
c̃j⋅xj (6)  

Cr

{
∑n

j=1
ãij⋅xj⩽b̃i

}

⩾λi, (i = 1,⋯,m) (7)  

xj⩾0, (i = 1,⋯,m) (8)  

where x = (x1, x2,⋯, xn) is the nonfuzzy decision variable of the selected 
vector model; ̃cj is the coefficient in the objective function; and ̃aij and ̃bi 

are the fuzzy coefficients in the constraint. Here, i is the number of 
constraints, and j is the number of variables. Eq. (6) is the optimization 
objective function, and Eq. (7) indicates that the confidence level of 
constraint 

∑n
j=1ãij⋅xj⩽b̃i should be greater than or equal to the 

probabilityλi. 

2.4. Multiobjective nonlinear optimization model based on left–right type 
fuzzy numbers and fuzzy credibility constraint planning 

The steps required to solve the LR-FN-MONLP problem are as 
follows. 

Step 1. The LR-FN-MONLP problem is modeled. 
Step 2. LR-type fuzzy numbers are introduced to quantify the un

certain parameters. 
Step 3. The affiliation function of each objective function is defined. 
Step 4. The concepts of the possibilistic mean value and credibility 

measure are applied to transform the multiobjective planning model 
based on LR-type fuzzy numbers into a deterministic single-objective 
planning model. 

ÃLR can be transformed based on the crisp possibilistic mean value 

(M
(

Ã
)

) as follows [20]: 

M
(

Ã
)
=

(
M*
(

Ã
)
+ M*

(
Ã
))

2
=

∫ 1

0
ρ
(

inf Ãρ + supÃρ

)
dρ (9)  

where M*
(

Ã
)

and M*

(
Ã
)

are the upper and lower possibilistic mean 

values ofÃLR; ρ is a fuzzy level and can refer to the ρ-level cut forÃLR, 
withρ ∈ [0, 1]; infÃρand supÃρ are the left and right extreme points, 
respectively. 

Therefore, the possibilistic mean value can be obtained as follows: 

M
(

Ã
)
=

a + a
2

+
β − α

6
(10) 

Step 5. The uncertainty constraint with LR-type fuzzy numbers is 
converted into an equivalent deterministic form through plausibility 
constraints. 

Liu et al. [21] defined the credibility measure Cr for real number λ 
and LR-fuzzy number ALR with a membership function as follows: 

Cr
{

Ã*r
}
=

1
2

(
Pos
{

Ã*r
}
+ Nec

{
Ã*r
})

(11) 

If the corresponding ρ-critical values are greater than 0.5, then the 
fuzzy constraints can be transformed into equivalent crisp constraints as 
follows: 

Cr
{

Ã⩽r
}

⩾ρ ⇔ r⩾(2 − 2ρ)a+(2ρ − 1)(a + β) (12)  

Cr
{

Ã⩾r
}

⩾ρ ⇔ r⩽(2ρ − 1)(α − α)+ (2 − 2ρ)α (13) 
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Step 6. The transformed model is solved for different confidence 
probabilities, and a solution is generated. 

3. Model development 

In a region dominated by cultivation, a WEFN system is established 
to achieve conversions and trade-offs among the light use efficiency, 
quantity of biomass electrical energy, and quantity of hydroelectric 
energy through the dynamic regulation of the main driving elements of 
the WEFN, water resources, the cultivation structure, and energy to 
promote regional sustainable development. Fig. 1 shows the relationship 
between regulated resources and objectives in the WEFN. 

The LR-FN-MONLP model is constructed considering three elements: 
objective functions, constraints and decision variables. The objective 
functions involve biomass electrical energy maximization, light use ef
ficiency maximization, and hydroelectric energy minimization. The 
constraints include surface water availability, groundwater availability, 
the water demand, the water balance, electrical energy availability, land 
use and nonnegative constraints. The decision variables include surface 
water irrigation quotas, groundwater irrigation quotas; water cycle el
ements for different growth stages in various subareas with different 
crops; surface water availability, groundwater availability, and power 
availability in different subareas; and ares in different subareas with 
various crops. 

The parameters involved in the decision-making process, such as the 
maximum light use efficiency, crop yield, water pump efficiency, surface 
water availability, and crop water demand, are subjective and uncertain 

due to socioeconomic activities and fluctuations in natural conditions, 
and they are thus defined as LR-type fuzzy numbers. The model con
straints are expressed as credibility constraints due to data uncertainty. 
The framework of the model is shown in Fig. 2. 

3.1. Notations 

To clearly understand the model parameters and variables, their 
meanings are provided in Table 1. 

3.2. Objective function 

The objective functions of the constructed model involve maximizing 
biomass electrical energy, maximizing light energy utilization, and 
minimizing hydroelectric energy. A tradeoff among the three objectives 
is achieved by synergistically optimizing agricultural resource utiliza
tion, including water resources, land resources and energy. The specific 
expressions of the objective functions are as follows. 

3.2.1. Biomass electrical energy maximization 
Bioenergy is the energy provided by living plants in nature, which 

use biomass as a medium to store solar energy; additionally, biomass is a 
renewable energy source, an important link between energy, food and 
water in agricultural WEFN, and the most direct index for bioenergy 
potential assessment. Straw resulting from crop harvesting can be 
employed to produce biomass energy, which can be further converted 
into electrical energy. Increasing biomass electrical energy production 
allows the generated electrical energy to be applied in various other 
areas or in the next stage of crop production for waste utilization, and 
this approach promotes green and efficient agriculture [22]. The 
expression of this objective function is as follows [23]:  

where 
∑D

d=1
∑C

c=1Adc⋅Ỹdc⋅αc⋅βc⋅γ⋅δc denotes the biomass output (kg), 
HHVc ⋅eff ⋅ρcombustion

3.6 denotes the fraction of the total energy contained in the 
feedstock used to generate electricity through combustion (kW⋅h/kg), 

and HHVc ⋅effthermal ⋅effwtoE ⋅ρgasification
3.6 denotes the fraction of electrical energy 

Fig. 1. WEFN in an agricultural system.  

maxf BIOE =
∑D

d=1

∑C

c=1
Adc⋅Ỹdc ⋅αc⋅βc⋅γ⋅δc⋅

[
HHVc⋅eff ⋅ρcombustion

3.6
+

HHVc⋅ef fthermal⋅ef fwtoE⋅ρgasification

3.6

]

(14)   
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(kW⋅h/kg) generated via gas combustion in an internal combustion 
engine. 

3.2.2. Light use efficiency maximization 
The light use efficiency, which is maximized as the main objective of 

the model, refers to the conversion of photosynthetically active radia
tion absorbed by vegetation into organic carbon, thus reflecting the 
ability of plants to convert light into chemical energy. Light use effi

ciency enhancement is beneficial for crops to increase biomass and thus 
yield. In this study, the effects of temperature and moisture on the light 
use efficiency were considered based on the modified Carnegie-Ames- 
Stanford approach (CASA) model proposed in Potter et al. [24], and 
the corresponding objective function can be expressed as follows: 

maxf LUE =

∑D
d=1
∑C

c=1
∑T

t=1Tε1
dct⋅Tε2

dct⋅Wε
dct ⋅̃ε

*
dct

SU
(15) 

Fig. 2. Framework of the model.  
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Table 1 
Significance of the model parameters and variables.  

Indices 

c Crop index 
d District index 
t Period index 
gro Superscript for groundwater 
sur Superscript for surface water 
max Superscript for the maximum value 
min Superscript for the minimum value  

Symbols for the objective functions 
fBIOE Objective function of biomass electrical energy (kW⋅h) 
fELEC Objective function of hydroelectric energy (kW⋅h) 
fLUE Objective function of the light use efficiency (g C/MJ)  

Parameters 
αc Straw-grain ratio for crop c 
βc Straw collection coefficient for crop c 
γ Coefficient of new energy availability 
δc Conversion ratio from the residue of crop c to 

the standard coal equivalent 
ρcombustion Combustion coefficient 
ρgasification Gasification coefficient 
ηsur Utilization coefficient for surface irrigation 
ηgro Utilization coefficient for well irrigation 
μ̃sur Efficiency of surface water abstraction (LR-FN) 
μ̃pump Pump efficiency (LR-FN) 
μmotor Motor efficiency 
μ̃dra Drainage efficiency (LR-FN) 

ε̃*
dct 

Maximum light use efficiency for crop c in subarea d during period t (g C/MJ) (LR-FN) 

Amin
dc Lower limit of land availability for crop c in subarea d (ha) 

Amax
dc Upper limit of land availability for crop c in subarea d (ha) 

D̃
min
dct 

Minimum water demand (m3) (LR-FN) 

DMc Drainage modulus for crop c (m3/d/ha) 
eff Electrical efficiency of an incineration plant 
effthermal Thermal efficiency of an internal combustion engine 
effwtoE Efficiency of the conversion of mechanical work to electricity 
ECIsur Electricity for irrigation with surface water (kW⋅h) 
ECIgro Electricity for irrigation with groundwater (kW⋅h) 
ECD Electricity for drainage (kW⋅h) 
EWA Total energy availability for water (kW⋅h) 
ET0,dct Reference evapotranspiration for crop c in subarea d during period t (m3/ha) 
Hlift Pumping lift head (m) 
Hnop Nominal operating pressure (m) 
Hlossess Head loss (m) 
HDd Drainage head in subarea d (m) 
HHVc Higher heating value of crop c (MJ/kg) 
HIsur Hydraulic head of surface water (m) 
Pdct Effective precipitation for crop c in subarea d during period t (m3/ha) 
SU Product of the number of different division quantities 
Tε1

dct Temperature stress factor 1 for crop c in subarea d during periodt 
Tε2

dct Temperature stress factor 2 for crop c in subarea d during periodt 
Topt

dct 
Optimum temperature for crop c in subarea d during period t (℃) 

TWdct Average temperature for crop c in subarea d during period t (℃) 
T̃WS

sur Total surface water supply (m3) (LR-FN) 
TWSgro Total groundwater supply (m3) 
TSc Number of drainage days for crop c (d) 
Wε

dct Water stress factor for crop c in subarea d during periodt 
Ỹdc Yield per unit area of crop c in subarea d (kg/ha) (LR-FN)  

Decision variables 
Adc Irrigation area of crop c in subarea d (ha) 
Ddct Drainage for crop c in subarea d during period t (m3/ha) 
ESId Energy availability for water use in subarea d (kW⋅h) 
ETa,dct Actual evapotranspiration for crop c in subarea d during period t (m3/ha) 
ETg

dct Root and buffer exchange rate for crop c in subarea d during period t (m3/ha) 
Hdct Water depth at the paddy field surface for crop c in subarea d during period t (m3/ha) 
IQsur

dct Surface water irrigation for crop c in subarea d during period t (m3/ha) 
IQgro

dct Groundwater irrigation for crop c in subarea d during period t (m3/ha) 
Ldct Leakage for crop c in subarea d during period t (m3/ha) 
Wdct Soil moisture content for crop c in subarea d during period t (m3/ha) 
WSsur

d Surface water availability in subarea d (m3) 
WSgro

d Groundwater availability for irrigated agriculture in subarea d (m3)  
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(1) Calculation of temperature stress factors. 
Tε1

dct and Tε2
dct are temperature stress factors, which represent the 

changes in light use efficiency due to photosynthesis inhibition and 
respiration promotion during plant growth in low- and high- 
temperature environments, respectively; the specific equations for 
these temperature stress factors are as follows: 

Tε1
dct = 0.8+ 0.002⋅Topt

dct − 0.0005⋅
(
Topt

dct

)2 (16)   

(2) Calculation of water stress factors. 
Wε

dct represents the stress effect of water on plant growth in the CASA 
model, thus reflecting the magnitude of the effect of different hydro
logical and environmental conditions on plant photosynthesis; notably, 
the value of this variable ranges from 0.5 to 1. In the case of extreme 
drought, Wε

dct tends to approach 0.5. The wetter the environment is, the 
larger the Wε

dct value, and the maximum value can approach 1. The 
expression is as follows: 

Wε
dct = 0.5⋅

ETa,dct

ET0,dct
+ 0.5 (18)  

3.2.3. Hydroelectric energy minimization 
Electricity consumption occurs during surface water extraction and 

groundwater pumping and drainage, and the corresponding functional 
expression is directly related to the pumping head. To pump water from 
aquifers, the pumping head, the rated operating pressure and friction 
losses should be considered. A reduction in the required hydraulic 
electrical energy can reduce energy consumption, as denoted by the 
following expression [25]: 

minf ELEC = ECIsur +ECIgro +ECD (19)  

ECIsur =

[
HIsur

102 × 3.6⋅μ̃sur

(
∑D

d=1

∑C

c=1

∑T

t=1
IQsur

dct ⋅Adc

)]

(20)  

ECIgro =

[
Hlift + Hnop + Hlossess

102 × 3.6⋅μ̃pump⋅μmotor

(
∑D

d=1

∑C

c=1

∑T

t=1
IQgro

dct ⋅Adc

)]

(21)  

ECD =

⎡

⎣
∑D

d=1

∑T

t=1

HDd

102 × 3.6⋅μ̃dra
d

(
∑C

c=1
DMc⋅TSc

)

⋅Adc

⎤

⎦ (22)  

3.3. Constraints 

The above objective function is conditioned by the following seven 
conditions: 

(1) Surface water availability constraint 
The surface water allocation amounts at all growth stages for the 

different crops should not be greater than the surface water supply in 
each subarea. Usually, the total surface water available in an area is 
derived from runoff but is less than the runoff volume (because of the 
requirement to retain ecological runoff from rivers). In this constraint, 
T̃WS

sur 
is the total surface water supply. The total surface water supply 

always varies due to precipitation, climate, temperature and other fac
tors, and this parameter is thus defined as an LR-type fuzzy number, and 
this constraint can be expressed as: 

∑C

c=1

∑T

t=1
Adc⋅IQsur

dct ⩽WSsur
d ⋅ηsur ∀d (23)  

Cr

(
∑D

d=1
WSsur

d ⩽T̃WS
sur
)

⩾τ (24) 

(2) Groundwater availability constraint. 
Similar to surface water, the groundwater allocation amounts at all 

growth stages for the different crops should not exceed the groundwater 

supply in each subzone. The available groundwater supply in all sub
areas should not be greater than the extractable groundwater amount in 
these areas. This constraint can be expressed as follows: 

∑C

c=1

∑T

t=1
Adc⋅IQgro

dc ⩽WSgro
d ⋅ηgro ∀d (25)  

∑D

d=1
WSgro

d ⩽TWSgro (26) 

(3) Water demand constraint 
The water demand of the different crops at the various growth stages 

in the different subareas should be no greater than the sum of the surface 
water and groundwater irrigation quotas of the different crops at the 
various growth stages in the different subareas, which is defined as an 
LR-type fuzzy number due to the influence of environmental fluctua
tions and other factors, and the constraint is expressed as follows: 

Cr
(

IQsur
dct + IQgro

dct ⩾D̃min
dct

)
⩾ς ∀d, c, t (27) 

(4) Water balance constraint. 
The water balance constraint describes the changes in water depth 

(paddy fields) or soil water content (dry fields) when considering the 
recharge and discharge processes in farmlands, reflecting the dynamics 
and continuity of water changes at the different stages of crop fertility. 
The expression of this constraint is as follows: 

Water balance constraint for irrigated fields: 

ETa,dct = Hdct − Hdc,t+1 +Pdct + IQsur
dct + IQgro

dct − Ldct − Ddct ∀d, c = 1, t
(28)  

where the drainage volume is related to the water depth at the paddy 
field surface and can be expressed with the following equation: 

Ddct =

{
0 Hdct⩽Hs
Hdct − Hs Hdct > Hs

∀d, c = 1, t (29) 

The water depth at the surface of a paddy field should be smaller 
than the maximum depth of the water layer: 

Hdct⩽Hmax
dct ∀d, c = 1, t (30) 

Dryland water balance constraints: 

ETa,dct = Wdct − Wdc,t+1 +Pdct + IQsur
dct + IQgro

dct +ETg
dct ∀d, c = 2, 3, t (31) 

The dryland soil moisture content should vary between the minimum 
and maximum soil moisture contents, as follows: 

Wmin
dct ⩽Wdct⩽Wmax

dct ∀d, c = 2, 3, t (32) 

(5) Electrical energy availability constraint 
In irrigated agricultural systems, where energy is mainly employed 

Tε2
dct =

1.184
{

1 + exp
[
0.2⋅
(
Topt

dct − 10 − TWdct
) ] }

⋅
{

1 + exp
[
0.3⋅
(
− Topt

dct − 10 + TWdct
) ] } (17)   
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Fig. 3. Solution method of the optimization model.  
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for surface water extraction, groundwater pumping and drainage, the 
resultant electricity consumption should not exceed the allowable 
quantity and total energy availability in each district. The expression is 
optimized for agricultural energy. This constraint can be expressed as 
follows:   

∑D

d=1
ESId⩽EWA (34) 

(6) Land use constraint 
For each crop in the different subareas and for each crop type in all 

subareas, the lower and upper limits of the irrigated area should be 
considered based on food requirements and major crop production 
practices. This constraint can be expressed as follows: 

Amin
dc ⩽Adc⩽Amax

dc ∀d, c (35) 

(7) Nonnegative constraint 
The decision variables should be nonnegative. 

IQsur
dct , IQgro

dct ,Adc,WSsur
d ,WSgro

d ,ESId,ETa,dct,Hdct, Ldct,Ddct,Wdct,ETg
dct⩾0 (36)  

3.4. Model solution 

A multienergy coordination model for agricultural WEFN with the 
proposed LR-FN-MONLP framework was developed based on the infor
mation presented in sections 3.1 to 3.3. Based on the solution steps of 

LR-FN-MONLP (section 2.4), the key to solving the model is to transform 
the uncertain multiobjective programming model into a deterministic 
single-objective programming model based on the concepts of the pos
sibilistic mean value and credibility measure. Here, three objectives are 
considered equally important. The final transformed model is expressed 
as follows, and the specific transformation processes are shown in the 
Supplementary Materials. 

maxF (37)  

where F is the weighted possibilistic mean value of the objective 
function,F̃ = [A,R,M,N]LR, and is calculated as follows: 

F =
A + R

2
+

N − M
6

(38) 

Specific expressions ofA,R,M, and N are provided in the Supple
mentary Materials. 

Fig. 4. Study area.  

Cr

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑C

c=1

∑T

t=1
Adc⋅

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(
HLift + Hnop + Hlossess

102 × 3.6⋅μ̃pump⋅μmotor ⋅IQgro
dct

)

+

⎛

⎝ HDd

102 × 3.6⋅μ̃dra
d

⋅DMc⋅TSc

⎞

⎠+

(
HIsur

102 × 3.6⋅μ̃sur⋅IQsur
dct

)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⩽ESId

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⩾ϕ ∀d (33)   
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Constraints: 

∑D

d=1
WSsur

d ⩽[(2τ − 1)(TWSsur − αTWSsur) + (2 − 2τ)TWSsur ] ∀d (39)  

IQsur
dct + IQgro

dct ⩾(2 − 2ς)Dmin
dct +(2ς − 1)

(
Dmin

dct + βDmin
dct

)
∀d, c, t (40)    

where (39), (40), and (41) denote the transformations of fuzzy con
straints (24), (27), and (33), respectively, into equivalent exact con
straints considering plausibility constraints. where τ, ς and ϕ denote the 
variables determined by the decision maker to satisfy the probability 
chance constraint at the lowest confidence level, and these variables 
should be provided at a confidence level higher than or equal to 0.5, i. 
e.,τ, ς, ϕ⩾0.5. The remaining constraints are the same as those in Eqs. 
(23), (25), (26), (28), (29), (30), (31), (32), (34), (35), and (36). 

Based on the input parameters in Table 1, the transformed model can 
be coded in a software package to solve the optimization model and then 
output the values of decision variables (i.e., the 12 decision variables in 
Table 1). In this study, the model is programmed using LINGO software, 
and the data are imported and exported using Excel. For each fuzzy 
scenario (a certain confidence level), three LINGO procedures related to 
the affiliation function of each objective function are needed to help 
transform the multiobjective programming problem into a single- 

objective programming problem. Together with the combined model 
procedure based on the above transformed model, there are a total of 4 
LINGO procedures, and each procedure takes approximately one min
ute. Therefore, for each fuzzy scenario, 4 min are needed to obtain the 
final solution. In this study, 256 fuzzy scenarios are considered, so the 
total solution time is 260 min. The specific solution flow chart for the 
model is shown in Fig. 3. 

4. Model application 

The model application involves two steps: 1. Selection of the study 
area and 2. Data collection. 

4.1. Study area 

The study area is located in the Jinxi Irrigation District in Fujin city, 
Heilongjiang Province, Northeast China. The longitude of this area 
ranges from 131◦30′ to 132◦37′E, and the latitude ranges from 46◦48′ to 
47◦14′N. The study area has a temperate continental climate (Fig. 4). 
The Jinxi Irrigation District is located on the right bank and in the lower 
reaches of the main channel of the Songhuajiang River, with a cultivated 
land area covering 1.011 × 105 ha. The Jinxi Irrigation District contains 
four subareas: the Jinshan, Songhuajiang, Toulin and Huama subareas. 
Irrigated agriculture is the largest water use type in the Jinxi Irrigation 
District, accounting for nearly 90% of the total water consumption. The 
average annual precipitation and evaporation are 542 and 720 mm, 
respectively. The Jinxi Irrigation District is a dual-irrigation district 
involving canals and wells, and the Songhua River is the main source of 
the surface water supply. The rapid pace of agricultural development in 
the Jinxi Irrigation District has led to groundwater overdraft due to a 
lack of water diversion and pumping projects. To mitigate the imbalance 
in water utilization, a pumping station at the head of the canal and 
drainage pumping stations were established. There are six drainage 
pumping stations across the Jinxi Irrigation District, including the 
Shanxi, Huama, Duijin, Shuangyushu, Toulin and Erlin drainage 
pumping stations. Water originating from the Songhuajiang subarea is 
discharged directly into the Songhua River, and water originating from 
the Jinshan, Huama and Toulin subareas is eventually discharged into 
the Waiqixing River. The Jinxi Irrigation District is an important food 
production base in Heilongjiang Province, China, with rice, corn, soy
beans, vegetables and melons as the main crops. Among these crops, 
rice, corn and soybean food crops have covered nearly 90% of the total 
arable land area over the past five years. Therefore, these three food 
crops were selected for further analysis in this study. 

4.2. Data collection 

The data required for LR-FN-MONLP model construction are used to 

Table 2 
Relevant parameters for the different crops.  

Parameters Parameter Unit Crops 

Rice Corn Soybean 

Straw-grain ratio αc dimensionless 0.98 1 1.36 
Collectable 

coefficient of 
straw 

βc dimensionless 0.72 0.87 0.56 

Higher heating 
value 

HHVc MJ/kg 18.8 19.2 16.2 

Conversion ratio 
stands for the 
ratio from the 
residue 

δc dimensionless 0.429 0.529 0.543 

Price of crop Pc Yuan/kg 3.16 2.25 5.4 
Fertilizer εfer

c Yuan/ha 885 800.55 645.3 
Pesticide εpes

c Yuan/ha 289.2 148.2 141.6 
Agricultural 

machinery 
εmac

c Yuan/ha 1566.3 973.05 846.9 

Seed εseed
c Yuan/ha 320.4 350.85 476.7 

Labor εlab
c Yuan/ha 1361.4 1043.7 311.55 

Agricultural film εfilm
c Yuan/ha 2.1 2.1 2.1 

Drainage modulus DMc m3/d/ha 80.352 67.392 67.392 
Drainage duration TSc d 4 2 2  

∑C

c=1
Adc⋅

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[

(2 − 2ϕ)⋅
1

μsur + (2ϕ − 1)

(
1

μsur +
1

αμsur

)

⋅IQsur
dct ⋅

Hsur

102 × 3.6

]

+

⎡

⎢
⎢
⎢
⎢
⎢
⎣

(2 − 2ϕ)⋅
1

μpump + (2ϕ − 1)

(
1

μpump +
1

αμpump

)

⋅IQgro
dct ⋅

Hlift + Hnop + Hlossess

102 × 3.6⋅μmotor

⎤

⎥
⎥
⎥
⎥
⎥
⎦

+

[

(2 − 2ϕ)⋅
1
μd + (2ϕ − 1)

(
1
μd +

1
αμd

)

⋅DMc⋅TSc⋅
HD

102 × 3.6

]

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⩽ECId ∀d (41)   
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establish meteorological, hydrological and agricultural production- 
related parameters and coefficients. These data were mainly obtained 
from the Fujin City Statistical Bulletin, the Fujin City Statistical Year
book, the China Meteorological Data Network (https://data.cma.cn/), 
government reports and published references. Hydrological data 
included the crop water demand and water supply, effective rainfall, 
crop evapotranspiration, the field water depth, drainage and seepage in 
each stage of paddy field growth, the soil water content in dry fields, and 
the exchange rate between root and buffer zones. The light use efficiency 
data required for the improved CASA model mainly included maximum 
light use efficiency [26], temperature and moisture data [27]. The 
required biomass electrical energy data mainly included the straw-to- 
grain ratio, straw collection coefficient, higher heating value, discount 
coal coefficient, gasification efficiency of internal combustion engines, 
and combustion efficiency of internal combustion engines. The required 
hydroelectric energy data primarily included the discharge modulus, 
discharge period, and water pump efficiency. 

The socioeconomic and environmental data mainly included the 
market price, the water price, the water resource use efficiency, land 
resource data, fertilizer use information, population- and crop-related 
coefficients, energy utilization information, the carbon footprint, and 
irrigation water use efficiency data, which can be used to determine 
most agricultural carbon emission sources and the related coefficients 
[28], surface water loss, groundwater leaching, and energy coefficients 
for agricultural production [29]. Certain relevant parameters for the 
different crops are listed in Table 2, and other related data are listed in 
the Supplementary Materials. 

In Table 2, the biomass energy conversion correlation coefficient is 
mainly from [30], the agricultural parameter prices are mainly from the 
“Agricultural Product Price Information Network of Heilongjiang Province” 
and the statistical yearbook of Fujin city. The drainage parameters were 
obtained from the “Engineering Feasibility Study Report of Jinxi Irrigation 
District”. 

5. Results analysis and discussion 

The results analysis and discussion concentrates on agricultural re
sources regulation, multi-energy tradeoff and model performance. 

5.1. Water quantity regulation and control 

Figure 5 shows the water allocation schemes for the different crops in 
the various subareas and all crop growth stages. Fig. 5 reveals that for 
rice crops, the allocated irrigated area in the Songhuajiang subarea is 
small, which results in a much smaller water allocation amount in the 
Songhuajiang subarea than in the other three subareas. For corn and 
soybean crops, the water allocation in the Toulin subarea is much larger 
than that in the other three subareas; moreover, the water allocation in 
the Jinshan and Huama subareas is moderate, and the water allocation 
amount in the Songhuajiang subarea is the smallest, as determined by 
the allocated irrigated area. Surface water and groundwater are more 
evenly distributed. In general, surface water is the main water supply 
source, and the ratio of surface water to groundwater use is 7:2. 

The surface water and groundwater availability proportions in the 
different subareas are as follows: the surface water availability in the 
Jinshan subarea reaches 8843.52 × 104 m3 (20.58%), that in the Toulin 
subarea reaches 18203.37 × 104 m3 (42.36%), that in the Songhuajiang 
subarea reaches 2915.30 × 104 m3 (6.78%), and that in the Huama 
subarea reaches 13007.51 × 104 m3 (30.27%). The available ground
water supply is 1246.97 × 104 m3 (17.52%) in the Jinshan subarea, 
2956.49 × 104 m3 (41.54%) in the Toulin subarea, 605.25 × 104 m3 

(8.50%) in the Songhuajiang subarea and 2308.06 × 104 m3 (32.43%) in 
the Huama subarea. The total water distribution is the highest in the 
Toulin subarea, followed by the Huama subarea and finally the Jinshan 
and Songhuajiang subareas. In terms of the surface water and ground
water distributions, the water distribution proportion in each subarea 
does not vary greatly, and the largest change is only 3.06% (the Jinshan 
subarea). 

Fig. 5. Water allocation in the different subareas for various crops and growth stages.  
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Surface water irrigation, groundwater irrigation and precipitation 
are the main sources of crop recharge in the field. Fig. 6 shows the 
variation in each water quantity element in each growth stage for the 
different crops. Optimization is based on the number of growth stage 
days, the crop water demand, precipitation, water deficit sensitivity, and 
the water allocation objectives. Based on the water balance, the crop 
water consumption in each growth stage can be obtained, and the ratio 
of water consumption to the water demand (relative water consump
tion) can be used to determine the water deficit in each growth stage and 
the corresponding contribution to the yield. For rice crops, the total 
water allocation amount was largest in June and July, followed by May, 
with comparable water allocation amounts in August and September. 
The water allocation percentages from May to September were [21.45% 
± 2.83%], [25.21% ± 2.30%], [24.67% ± 2.44%], [17.33% ± 1.80%], 
and [11.33% ± 0.82%]. The distribution ratios of surface water, 
groundwater and precipitation from May to September were 
0.49:0.04:0.46, 0.49:0.10:0.41, 0.43:0.09:0.48, 0.44:0.06:0.50, and 
0.24:0.12:0.63, respectively. The surface water and groundwater allo
cation ratios in May, June, July, and August basically remained the 
same, but they were lower in September. Although the total water 
allocation amounts in June and July were larger than those in May and 
September, the water consumption in the former months was 

significantly lower. This difference was particularly notable in July and 
is directly related to the insufficient total water supply in the irrigation 
area; thus, the corresponding growth stage was the most sensitive in 
regard to water shortages. More water should be preferentially allocated 
in July if more investment is made to replenish water. In the case of corn 
crops, the total water allocation amount was largest in July and August, 
followed by June, with comparable water allocation amounts in May 
and September. The water allocation percentages from May to 
September were [12.29% ± 0.81%], [20.89% ± 1.55%], [26.05% ±
2.86%], [26.31% ± 3.68%], and [14.46% ± 0.92%]. The distribution 
ratios of surface water, groundwater and precipitation from May to 
September were 0.12:0.10:0.78, 0.20:0.13:0.67, 0.20:0.13:0.68, 
0.24:0.15:0.61, and 0.13:0.11:0.76, respectively. The surface water and 
groundwater allocation ratios in June, July and August were similar, the 
surface water and groundwater allocation ratios in May and September 
were comparable, and water consumption in June and July was low. 
These results indicate that June and July are critical periods for corn 
irrigation and that an adequate water supply should be maintained. For 
soybean crops, the total water allocation amount was largest in July and 
August, followed by June, with comparable water allocation amounts in 
May and September. The water allocation percentages from May to 
September were [11.09% ± 0.63%], [22.41% ± 1.56%], [25.30% ±

Fig. 6. Variation of each water cycle element of different crops at each growth stage.  
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0.73%], [26.89% ± 0.74%], and [14.30% ± 1.05%], respectively. The 
distribution ratios of surface water, groundwater and precipitation from 
May to September were 0.09:0.08:0.83, 0.17:0.14:0.69, 0.15:0.12:0.72, 
0.20:0.15:0.65, and 0.11:0.09:0.80, respectively. The surface water and 
groundwater allocation ratios in May, June, July, and September basi
cally remained the same, and the allocation ratio of surface water to 
groundwater was slightly higher in August. The low water consumption 
observed in June, July and August, especially in July, indicates that 
soybean water shortage issues are most likely to occur in these months, 
and additional water should be allocated in July as a priority. 

5.2. Planting structure and energy regulation 

Figure 7 shows the planting structures under different scenarios. 
Under the optimization scenario, the rice, corn, and soybean occupancy 
ratio was 0.81:0.13:0.06 in the Jinshan subarea, 0.45:0.26:0.29 in the 
Toulin subarea, 0.95:0.04:0.01 in the Songhuajiang subarea, and 
0.77:0.16:0.07 in the Huama subarea. Under the normal scenario, the 

rice, corn and soybean occupancy ratio was 0.40:0.47:0.13 in the Jin
shan subarea, 0.20:0.54:0.26 in the Toulin subarea, 0.70:0.19:0.11 in 
the Songhuajiang subarea, and 0.40:0.47:0.13 in the Huama subarea. As 
shown in Fig. 7, rice cultivation is most advantageous, as reflected by the 
following findings: (1) the crop area allocated to rice crops is much 
larger than that allocated to corn and soybean crops, and (2) through 
optimization, the LR-FN-MONLP model considers three mutually 
balanced objectives (i.e., light use efficiency maximization, biomass 
electrical energy maximization, and hydroelectric energy minimization) 
to guarantee the optimal crop area for the different crops within specific 
adjustable ranges. According to the overall optimal results for the Jinxi 
Irrigation District, compared to the actual scenario, the percentage of 
the rice-planted area increased by 61.49%, the percentage of the corn- 
planted area decreased by 57.77%, and the percentage of the soybean- 
planted area increased by 4.39%. The LR-FN-MONLP model tended to 
allocate more area to rice crops, which may occur because the black soil 
encountered in Heilongjiang can absorb abundant mineral elements, 
such as nitrogen, phosphorus, and potassium, the quality of rice is good, 

Fig. 7. Proportion of the planted area of the different crops in the various subareas under different scenarios.  

Fig. 8. Energy regulation values.  
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the rice yield per unit area is high, and the water supply in the Jinxi 
Irrigation District is sufficient. The proportion of rice crops is the largest 
when τ,ς,ϕ = 0.5. As τ, ς,ϕ increases from 0.5 to 1 (where τ, ς,ϕ denotes 
the variables set by the decision maker to satisfy the probability chance 
constraint at the lowest confidence level), the proportion of rice crops in 
different subdivisions gradually decreases, and the proportions of corn 
crops and soybean crops gradually increase. The results suggest that the 
lowest confidence scenario yields the most optimal model results, and 
the sowing of rice crops is emphasized, thus making the allocation of 
agricultural water, energy, food and land resources more sustainable. 
However, on the other hand, a lower confidence level means that more 
water will be allocated, which will increase the water scarcity risk. 
Moreover, the available electrical energy increases with increasing 
confidence level in different confidence level scenarios. These findings 
can guide the future decisions of managers. 

The proportion of available electrical energy in the different sub
areas is as follows: 2555.85 × 104 kW⋅h (18.46%) in the Jinshan sub
area, 6247.91 × 104 kW⋅h (45.13%) in the Toulin subarea, 973.92 × 104 

kW⋅h (7.03%) in the Songhuajiang subarea, and 4066.27 × 104 kW⋅h 
(29.37%) in the Huama subarea. The Toulin subarea exhibits the most 
available electrical energy, accounting for approximately half of that in 
the whole irrigation area, followed by the Huama subarea and finally the 
Jinshan and Songhuajiang subareas. The available power varies little 
with the confidence level for different confidence levels. 

5.3. Multienergy target trade-offs 

The optimization model included three objectives related to the light 
use efficiency, biomass electrical energy, and hydroelectric energy. 
Additionally, multiple scenarios were generated based on combining the 
uncertain constraint variables τ, ς,ϕ (all these variables affect agricul
tural water and soil resource allocation), which impact the objective 
values. A statistical analysis of the changes in the values of these targets 

Fig. 9. Trade-off of LUE-ELEC-BIOE under the six confidence level conditions. Note: LUE denotes the light use efficiency; BIOE denotes biomass electricity; ELEC 
denotes the hydroelectric energy. 

Fig. 10. The trends of multidimensional indicators under different scenarios. 
Note: I-EB denotes the economic benefits; I-EQ denotes the equity; I-EI denotes 
the environmental impact; IWUE denotes the irrigation water use efficiency; 
EUE denotes the energy use efficiency; CF denotes the carbon footprint. 
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was performed based on different scenarios, as shown in Fig. 8. In the 
joint scenario forτ,ς,ϕ, the light use efficiency ranged from 1.53 ~ 1.88 g 
C/MJ, and the optimized value reached 1.75 g C/MJ. The biomass 
electrical energy ranged from 2.36 × 108 ~ 2.53 × 108 kW⋅h, and the 
optimized value was 2.45 × 108 kW⋅h. The hydroelectric energy ranged 
from 0.92 × 108 ~ 1.19 × 108 kW⋅h, and the optimized value reached 
1.04 × 108 kW⋅h. The light use efficiency and hydroelectric energy 
changed significantly in the different scenarios because both objectives 
are related to water allocation. Higher confidence levels indicate better 
satisfaction of the constraints and higher confidence in the optimization 
results. In particular, a high confidence level corresponds to a low risk of 
having inadequate surface water and groundwater availability levels. 
For example, the light use efficiency was the lowest under the conditions 
of τ = 1, ς = 1 andϕ = 1. Fig. 8 shows that the credibility level signifi
cantly affects the objectives. This information could guide decision 
makers in selecting better options in the decision-making process. 

Figure 9 shows the model objective function trade-off results under 
the six confidence level conditions. The different scenarios in the figure 
represent different credibility level scenarios (τ, ς,ϕ from 0.5 to 1). The 
area of the triangle represents the degree of coordinated development, 
and a larger area represents better coordinated development for a given 
scenario. The vertices of BIOE, LUE, and ELEC represent the optimal 
values of the three different objectives, and the closer to the vertices an 
indicator plots, the stronger the indicator is. Specifically, in each sce
nario, each objective function value remains between the corresponding 
maximum and minimum values, and by determining the upper and 
lower possible levels for each objective, the range of each objective can 
be determined. Then, via the application of normalization methods 
(details given in the Supplementary Materials), the indicator value of 
each objective can be determined. As an indicator value increasingly 
approaches 1, the indicator better satisfies the needs of the decision 
maker. For example, forτ = 0.6,ς = 0.7, andϕ = 0.8, if only the light use 
efficiency target is considered, the light use efficiency will reach 2.03 g 
C/MJ. If only the biomass electrical energy usage target is considered, 
the biomass electrical energy will reach 2.75 × 108 kW⋅h. If only the 
hydroelectric energy target is considered, hydroelectric energy will 
reach 0.78 × 108 kW⋅h. However, considering these three objectives 
simultaneously, the light use efficiency will reach 1.75 g C/MJ, the 
biomass electrical energy usage will be 2.45 × 108 kW⋅h, and the hy
droelectric energy will total 1.04 × 108 kW⋅h. These results reveal that a 
trade-off occurs among these three objectives, and a rational allocation 
result is obtained from a synergistic multienergy perspective. However, 
numerically, the biomass electrical energy indicator was notably stable 
in the different scenarios, with values close to 1, and the light use effi
ciency and hydroelectric energy targets varied considerably. The degree 
of coordination in the model [31] decreased with increasing confidence 
level, with values of 0.93, 0.91, 0.83, 0.73, 0.65, and 0.48. The results 
indicate that the model solutions with lower confidence levels yield 
higher satisfaction than do those with higher confidence levels (as 
shown in the figure below; notably, the model results with lower con
fidence levels encompass a larger area than that based on the model 
results with higher confidence levels), which facilitates the sustainable 
allocation of agricultural water, energy, food and land resources. 
However, a lower confidence level is associated with a higher risk of 
water scarcity due to the allocation of additional water resources, and 
this relationship can guide the future decisions of decision makers. 
These results suggest that a balanced decision approach could be 
established if the light use efficiency, hydroelectric energy and biomass 
electrical energy usage are simultaneously considered. 

5.4. Model multidimensional effect evaluation 

Figure 10 shows the six individual objectives related to economic, 
environmental and social factors, the irrigation water use efficiency, the 
energy use efficiency, and the carbon footprint under different sce
narios. Notably, the model optimization results were analyzed through a 

comparison to the current conditions. First, the value of each objective 
function plots within the range of the maximum and minimum values. 
By determining the upper and lower achievable limits of each objective, 
the range of each objective can be determined, and the indicator value of 
each objective can then be determined through normalization. As an 
indicator value tends to approach 1, the satisfaction level of decision 
makers is enhanced. The figure shows that the total area in the optimal 
scenario is larger than the total area in the actual scenario, i.e., the 
optimal scenario increases the satisfaction level of decision makers 
compared to that for the actual scenario (a coordinated development 
degree of 0.90 under the optimal scenario and a coordinated develop
ment degree of 0.79 under the actual scenario; forτ, ς,ϕ = 0.6,τ, ς,ϕ =

0.7, andτ,ς,ϕ = 0.8, the values are 0.87, 0.85 and 0.82). The indicators 
of the economic dimension are robust and close to 1 in each scenario, 
and the indicators of the environmental and social dimensions change 
more significantly. The irrigation water use efficiency, energy use effi
ciency, and carbon footprint are generally less variable. The coordinated 
development of the model decreases with increasing confidence value (i. 
e., as the value of τ, ς,ϕ decreases from 0.6 to 0.8) (shown in the figure as 
the area of the enclosed hexagon, which decreases with increasing 
confidence value). The results show that the models with lower confi
dence levels yield better satisfaction results than the models with higher 
confidence levels (as reflected by the larger area of the graphs obtained 
for models with lower confidence levels); however, such results are also 
associated with a higher risk of water shortage. Due to the reduction in 
the total land allocation amount in the optimized case, both the benefits 
and costs decrease, resulting in 9.58% lower net system benefits than 
those under the actual scenario. However, pollutant emissions are 
reduced by 22.01%, resource allocation equity is improved by 7.85%, 
the water use structure is impacted by adjusting the cropping structure, 
and the irrigation water use efficiency is improved by 2.67%. Moreover, 
the energy use efficiency increases by 4.92%, and the carbon footprint 
decreased by 5.38%. The model developed in this paper could help 
decision makers manage agricultural water and soil resources in a more 
sustainable way. 

6. Conclusion 

This study provides an optimization pathway for the sustainable 
development of WEFN systems in irrigated agricultural areas. A 
modeling approach for the synergistic and optimal regulation of water 
and soil energy resources in WEFN systems is established from a coor
dinated multienergy perspective. The characteristics and advantages of 
the developed approach can be summarized as follows: (1) The proposed 
approach can help achieve trade-offs among the light use efficiency, 
biomass electrical energy utilization, and hydroelectric energy use. (2) 
The model can help decision makers understand the overall scheme of 
water allocation in irrigation areas and assess the ratio of water con
sumption to water demand (relative water consumption) in each growth 
stage throughout the water cycle, thus effectively considering water 
scarcity and the associated influence on the yield in each growth stage. 
(3) The allocation of limited agricultural water and land resources is 
optimized to provide a reference for sustainable agricultural develop
ment. (4) The adoption of LR-type fuzzy numbers and uncertainty 
methods with possibilistic mean value and credibility constraints not 
only helps reflect the uncertainty in model parameters (e.g., the 
maximum light use efficiency, pump efficiency, and crop yield per unit 
area) but also aids in generating model solutions through different 
objective functions; therefore, this approach can enable decision makers 
to objectively address the actual problems in agricultural water and land 
resource allocation. 

The application value of the model constructed in this paper for the 
synergistic optimization of water-land-energy resources in WEFN sys
tems from the perspective of multienergy synergy in irrigation districts 
is mainly reflected in the ability of the model to promote the efficient 
management of agricultural water, land, and energy resources and to 
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enhance the ability of irrigation districts to cope with changes in energy 
sources. The results of the model can provide practical guidance for the 
management of agricultural water, land and energy resources in the 
Jinxi Irrigation District. For example, (1) surface water is the main water 
supply source, and the optimal ratio of surface water to groundwater is 
7:2. June and July are critical periods for irrigation and are the most 
sensitive to water shortages, so the ratio should be adjusted in June and 
July given the limited water resources. (2) A balance is achieved among 
biomass electrical energy, hydroelectric energy, and light use efficiency. 
A 8.57% increase in the light use efficiency leads to a 6.65% decrease in 
hydroelectric energy and a 1.39% increase in biomass energy. The 
optimal allocated volume of surface water is 2.11 × 108 m3, and that of 
groundwater is 0.592.11 × 108 m3. Based on these allocations, the 
planting ratio of rice, corn and soybean crops is 5.02:1.43:1.21. Fluc
tuations in the water supply have a significant impact on the utilization 
rates of light energy and hydroelectric energy; notably, when the 
quantity of available water increases by 4.16%, the light use efficiency 
will increase by 6.28%, and the hydroelectric energy will decrease by 
4.17%. In this case, the planted area could be increased by 3.09%, 
however, no further adjustments on plantation structure are required. 
According to the model results, decision makers can realize the optimal 
water and soil distribution patterns and synergistic multienergy utili
zation. Additionally, water resource trends can be predicted in advance 
to appropriately adjust energy and agricultural resource utilization 
schemes. (3) Due to the reduction in land area under the optimal sce
nario, the net benefit of the system is reduced by 9.58%. However, 
pollutant emissions are reduced by 22.01%, the resource allocation 
equity is improved by 7.85%, the water use structure is enhanced by 
adjusting the planting structure, the irrigation water use efficiency is 
improved by 2.67%, the energy use efficiency is increased by 4.92%, and 
the carbon footprint is reduced by 5.38%. Thus, the developed model 
can allow decision makers to manage agricultural soil and water re
sources in a more sustainable manner. 

The developed model can be applied to other regions or water and 
soil resource allocation problems to provide decision makers with suit
able strategies. In this paper, we consider the WEF relationship from the 
synergistic perspectives of light use efficiency, biomass electrical en
ergy, and hydroelectric energy. However, there is limitation to consider 
the relationship between recycling and transformation of the three en
ergy sources in irrigated agriculture, and the mathematical approach to 
coupling the three energy objectives into a single objective can consider 
other approaches (e.g. multi-objective algorithms to find Pareto solu
tions, etc.). 
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