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A B S T R A C T   

The water–energy–food–society (WEFS) nexus is profiled for sustainable development. The WEFS nexus exhibits 
strong uncertainty owing to the stochasticity of model structure, and water availability uncertainty under climate 
change and human activities. The WEFS nexus remains highly risky, as the uncertainty propagation in the WEFS 
nexus under the regulation of water resources allocation has rarely been investigated. In this study, white 
Gaussian noises were integrated into a system dynamic model for the WEFS nexus simulation, transforming the 
nexus from deterministic to stochastic. Based on a Monte Carlo simulation of the stochastic WEFS nexus with 
water availability uncertainty, the copula function was applied to evaluate the joint distributions between water 
availability and water shortage rates in the upstream and downstream zones to investigate the uncertainty 
propagation in the WEFS nexus. The effects of water resources allocation on the uncertainty propagation were 
analyzed by setting different water resources allocation schemes. The proposed approach was applied to the 
mid–lower reaches of Hanjiang River basin in China as a case study. The results indicate that an effective water 
resources allocation scheme can ensure water supply, and diminish the impacts of water availability uncertainty 
on water supply through reservoir operation. The annual average water supply rate increased from 84.74% to 
93.45%, and the standard deviation decreased from 3.37% to 1.78%. The high-level environmental awareness 
evoked by water or food shortages decreased significantly with smaller uncertainty. The co-evolution of the 
WEFS was ensured through its nexus. Water storage capacity was the vital factor to regulate the uncertainty 
propagation in the WEFS nexus. The impacts of upstream water availability uncertainty were efficiently regu
lated via reservoir operation for the zones with sufficient water storage capacity. Water supply was ensured and 
there was no significant response of the WEFS through its nexus to different water resources allocation schemes. 
If there was few water storage capacity in a zone, the water supply was remarkably influenced by the water 
availability uncertainty in the upstream zone. The water supply was difficult to ensure, and was sensitive to 
different water resources allocation schemes. The environmental awareness evoked by water or food shortages 
increased. The environmental awareness feedback under the impacts of the noises increased water demand 
uncertainty by altering the socioeconomic expansion, further increased WEFS uncertainty through its nexus, 
particularly when water availability was much smaller than water demand. The proposed approach can help 
quantify the effects of water resources allocation on the uncertainty propagation in the WEFS nexus and 
contribute to the sustainable development of the WEFS nexus.   

1. Introduction 

Water, energy, and food are the fundamental human resources 
(Bilgen, 2014; Vörösmarty et al., 2000; West et al., 2014). The in
terconnections across the water, energy, and food systems are increas
ingly tight and thus can be profiled as the water–energy–food (WEF) 

nexus to increase resource use benefits (Cai et al., 2018; D’Odorico et al., 
2018; Hoff, 2011; Huntington et al., 2021; Zeng et al., 2019a). Human 
sensitivity has been integrated into the WEF nexus to take the physical 
and social processes in the nexus simultaneously, and the WEF nexus has 
been expanded into the water–energy–food–society (WEFS) nexus for 
the sustainable development (Di Baldassarre et al., 2019; Fuchs et al., 
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2017; Sivapalan et al., 2012; Zeng et al., 2022). The system dynamic 
model has been widely applied to mimic the co-evolution of the nexus 
owing to its flexibility in describing the dynamics within an integrated 
system (Feng et al., 2016; Simonovic, 2002). However, modeling the 
WEFS nexus exhibits significant uncertainties owing to deficiencies in 
the model structure, and the input uncertainties. 

Deficiencies in the model structure mainly arises from a lack of 
knowledge in representing the real-life process of the WEFS nexus. 
Numerous studies have applied deterministic system dynamic model 
based on coupled ordinary differential equations to simulate the dy
namics of the nexus (Feng et al., 2016; Li et al., 2019; Wu et al., 2022). 
The deterministic model revealed the interactions among variables of 
the WEFS nexus, and further helped to investigate the co-evolution of 
the nexus. Stochasticity underlies the key process of model structure of 
the WEFS nexus simulation (Guerra et al., 2021; Shoemaker et al., 2020; 
Vellend et al., 2014), and can lead to remarkable variability in the state 
variables of the nexus. However, the deterministic model is often inca
pable of identifying the stochasticity in its model structure of the WEFS 
nexus simulation, and ignores the risk of its results challenging the 
sustainable development goals. The stochasticity of the nexus was 
typically simulated by using noises method (Chen et al., 2021; Feng 
et al., 2019; Guttal and Jayaprakash, 2007). For example, An et al. 
(2021) employed the noises method to ordinary differential equations 
for the dynamics of the water supply, power generation, and environ
mental awareness (WPE), transforming the WPE nexus simulation from 
deterministic to stochastic. The probability density function (PDF) of the 
state variable was estimated from the stochastic WPE nexus simulation, 
which provided more information for risk management than a deter
ministic series from the deterministic WPE nexus simulation. Therefore, 
the noises method can effectively investigate the stochasticity of the 
WEFS nexus, and further contribute to the risk management of the WEFS 
nexus to achieve sustainable development goals. 

Water availability is one of the primary inputs to the WEFS nexus 
simulation. Owing to the impacts of climate change and human activ
ities, the water availability uncertainty is expanding (Her et al., 2019; 
Muller Schmied et al., 2014; Vetter et al., 2017), and an increase in the 
risk of water supply through the WEFS nexus is also evident (Govindan 
and Al-Ansari, 2019; Ji et al., 2020; Ma et al., 2020; Zeng et al., 2019b). 
The effects of water availability uncertainties on the nexus are described 
only as a whole basin, which cannot express the uncertainty propagation 
within the basin, especially from upstream to downstream via hydro
logic connections (Moges et al., 2020; Silva et al., 2018; Zhang and Shao, 
2018). Thus, the risks of water shortage may propagate from upstream 
to downstream. Adaptive measures to ensure water supply should 
thereby consider the water availability uncertainties not only from the 
local area, but also from the upstream areas. As the joint distributions of 
hydrologic variables have often been adopted to express the water 
availability uncertainty (Renard, 2011; Serinaldi, 2013), the copula 
function has been used as a hydrologic frequency analysis method to 
describe water availability uncertainty by binding multiple independent 
random variables into joint distributions (Chen et al., 2013; Karmakar 
and Simonovic, 2009; Nelsen, 2006). Therefore, the water availability 
uncertainty propagation from upstream to downstream can be assessed 
by the copula function. 

The water supply assurance strategy often results from a water re
sources allocation model that takes the impacts of the water availability 
uncertainty through reservoir operation (Castelletti et al., 2010; Chen 
et al., 2016; He et al., 2022; Liu et al., 2010; Zeng et al., 2017). 
Numerous studies took the water availability uncertainty following the 
historical natural water flow, whereas the impacts of reservoir operation 
on the water availability uncertainty were overlooked or significantly 
simplified. The risks of the water supply, and even of WEFS might be 
overestimated, or underestimated. Water resources allocation simulta
neously takes the reservoir operation and the hydrologic connections 
into account (Liu et al., 2018; Pedro-Monzonis et al., 2015; Zeng et al., 
2021). Incorporating a water resources allocation model into WEFS 

simulation can improve the assessment of the uncertainty propagation in 
the WEFS nexus. 

Our study aims to quantitatively assess the effects of water resources 
allocation on the uncertainty propagation in the WEFS nexus. The 
reminder of this paper is organized as follows: Section 2 introduces the 
framework for developing the stochastic WEFS nexus simulation with 
water availability uncertainty, and assessing the effects of water re
sources allocation on the uncertainty propagation in the WEFS nexus. 
Section 3 applies the framework to the mid–lower reaches of Hanjiang 
River basin in China. Section 4 presents the co-evolution results of the 
stochastic WEFS nexus simulation with water availability uncertainty, 
and discusses the effects of water resources allocation on the uncertainty 
propagation in the WEFS nexus. Section 5 concludes the study. 

2. Method 

The simulation of the interactions between water, energy, food and 
society systems is based on the deterministic dynamic model of the 
WEFS nexus proposed by Zeng et al. (2022). The WEFS nexus model is 
transformed from deterministic to stochastic through adding the white 
Gaussian noises to the ordinary differential equations to express the 
model structure uncertainty of the WEFS nexus simulation. To deter
mine the impacts of the water availability uncertainty on the stochastic 
WEFS nexus simulation, the PDF of the water availability within basin is 
estimated by frequency analysis method. Discrete water availability 
samples are generated by the Monte Carlo method through its PDF. As 
water shortage is outputted from the stochastic WEFS nexus simulation 
with the inputs of the discrete water availability, discrete water shortage 
rates are defined by the ratios of water shortage to demand. The PDF of 
the water shortage rate is then determined by fitting the sample data. 
Thus, joint distributions of the water availability and water shortage 
rates can be obtained by copula function through connecting their 
marginal distributions. The joint distribution functions can quantify the 
uncertainty propagation in the WEFS nexus that are the uncertainties of 
water availability from upstream to downstream. As different water 
resources allocation schemes are inputted into the WEFS nexus simu
lation, the effects of water resources allocation on the uncertainty 
propagation in the WEFS nexus can be studied by the joint distribution 
functions. The framework is illustrated as Fig. 1. 

2.1. Deterministic dynamic WEFS nexus model 

To investigate the interactions between water, energy, food and so
ciety systems, Zeng et al. (2022) developed a deterministic system dy
namic model, expanding the WEF nexus into the WEFS nexus. The 
Interactive River-Aquifer Simulation (IRAS) water resources allocation 
model (Loucks, 2002; Zeng et al., 2021) was integrated into the WEFS 
nexus model to quantify the impacts of water resources allocation on the 
co-evolution of the WEFS nexus. 

The WEFS nexus comprises four modules: water system, energy 
system, food system, and society system modules. In the water system 
module, the water demand is firstly projected based on socioeconomic 
factors. The water demand and water availability are then inputted into 
the IRAS model to simulate water resources allocation, including the 
water release from reservoir based on Fig. 2 and Eqs. (1)–(7), and the 
water shortage experienced by water users by Eqs. (8)–(9). The water 
supply and agricultural water shortage rates outputted from the water 
system module are then inputted into energy and food system modules, 
respectively, to determine the energy and food shortages. The water, 
energy and food shortage rates are taken as the inputs of the society 
system module to determine the shortage awareness of water, energy 
and food, and further the environmental awareness. Once the environ
mental awareness exceeds its critical value, the environmental aware
ness feedback to constrain the socioeconomic factors in the water system 
module will be triggered to alleviate the stress on water, energy and food 
supplies. Further details can be retrieved from Zeng et al. (2022). 
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Fig. 1. Framework for assessing the effects of water resources allocation on the uncertainty propagation in the WEFS nexus.  

Fig. 2. Water release rule of reservoirs in the IRAS model.  
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where t, t1, and t2 are the current time, initial time, and end time in the 
period, respectively; Pt denotes the ratio of current time length to period 
length; Vt

max, Vt
min, Vb

max, Vb
min, Ve

max, and Ve
min represent the maximum and 

minimum storages at the current time, beginning, and ending of the 
period, respectively; qt

max, qt
min, qb

max, qb
min , qe

max , and qe
min denote the 

maximum and minimum releases, respectively; Pv is the ratio of current 
storage; and qt is the current release. 
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where ts is the current time step (in the IRAS model, the year is divided 
into user-defined time step, and each time step is broken into user- 
defined sub-time step, based on which water resources allocation con
ducts); Tsts denotes the total number of the sub-time steps; sts is the 
current sub-time step; WEsts

i,j represents the projected natural water 
inflow for the j-th water use sector in the i-th operational zone; WTSupsts

i,j 

is the total water supply; WRSupsts
i,j is the water supply from reservoir; 

WDts
i,j is the water demand; fred is the demand reduction factor; and WSst

i,j 

is the water shortage. 

2.2. Stochastic dynamic WEFS nexus model 

As white Gaussian noise is popular in stochastic simulation owing to 
its effectiveness in capturing the randomness of state variables (Meng 
et al., 2020; Schmogrow et al., 2012; Xiao et al., 2021), it has been 
employed to simulate the stochasticity of the WEFS nexus. Specifically, 
the white Gaussian noises are incorporated into the seven primary 
governing equations (i.e., referring to the dynamics of population, GDP, 
crop area, water use quota, energy use quota, crop yield, and environ
mental awareness, respectively) to illustrate the uncertainties of the 
model structure of the WEFS nexus simulation as presented by Eqs. (10)– 
(16). The developed WEFS nexus simulation was transformed from 
deterministic into stochastic. 

dNt = rP,t⋅Nt⋅dt + tsP⋅Nt⋅dWP (10)  

dGt = rG,t⋅Gt⋅dt+ tsG⋅Gt⋅dWG (11)  

dCAt = rCA,t⋅CAt⋅dt + tsCA⋅Gt⋅dWCA (12)  

dWQt
i,j = rqwu,t⋅WQt

i,j⋅dt + tsqwu⋅WQt
i,j⋅dWqwu (13)  

dEQt
i,j = re,t⋅EQt

i,j⋅dt + tse⋅EQt
i,j⋅dWe (14)  

dCYt
i,j = rpro,t⋅CYt

i,j⋅dt + tspro⋅CYt
i,j⋅dWpro (15)  

dEt = dWAt + dEAt + dFAt + tsEN ⋅Et⋅dWEN (16)  

where Nt, Gt, CAt, Et, WAt, EAt, and FAt, are the population, GDP, crop 
area, environmental awareness, shortage awareness of water, energy, 
and food in the t-th year, respectively; WQt

i,j, and EQt
i,jdenote the water, 

and energy use quotas of the j-th water user in the i-th operational zone, 
respectively; CYt

i,j is the potential crop yields of the j-th crop in the i-th 
operational zone; rP, t, rG, t, rCA, t, rqwu, t, re, t, and rpro, t are the growth 
rates of population, GDP, crop area, water use quota, energy use quota, 
and crop yield in the t-th year, respectively, which are the functions of 
time and environmental awareness feedback as detailed in Zeng et al. 
(2022); tsP, tsG, tsCA, tsqwu, tse, tspro, and tsEN are the noise intensities for 
the growths of population, GDP, crop area, water use quota, energy use 
quota, crop yield, and environmental awareness, respectively; dWP, 
dWG, dWCA, dWqwu, dWe, dWpro and dWEN are the white Gaussian noises 
for the growths of population, GDP, crop area, water use quota, energy 
use quota, crop yield, and environmental awareness, respectively. 

2.3. Monte Carlo sampling for the water availability uncertainties 

Monte Carlo sampling has been widely used to analyze the impacts of 
uncertain inputs or parameters of hydrological model on runoff (Jere
miah et al., 2011; Knighton et al., 2014). As runoff determines water 
availability, the water availability uncertainty can be analyzed by the 
Monte Carlo sampling. The PDF of a hydrologic variable, including 
water availability, is often described by the Pearson type III (P-III) dis
tribution according to the recommendation in the specification for hy
drologic computation of water resources and hydropower projects in 
China. The parameters of P-III distribution (shown as Eq. (17)) are 
estimated by minimizing the difference between the P-III distribution 
and the empirical distribution from the historical records of water 
availability. 

f (x) =
βα

Γ(α)(x − a0)
α− 1exp( − β(x − a0)),α > 0, x > a0 (17)  

where α, β, and a0 are the shape, scale, and location parameters, 
respectively. The difference between empirical and the P-III distribu
tions is quantified by the root-mean-square error (RMSE) as shown in Eq. 
(18). 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
n
∑n

q=1
eq

2

√
√
√
√ (18)  

where n is the sample size and eq is the q-th differences of the sample. 
The maximum likelihood estimation is used to minimize the RMSE. 
Then, the Kolmogorov–Smimov (K–S) is adopted as a goodness-of-fit test 
for the optimal P-III distribution as a hypothesis testing. If the hypothesis 
testing with a 95% confidence interval is satisfied, the optimal distri
bution of water availability is acceptable for the Monte Carlo sampling 
of the stochastic WEFS nexus. The samples of the state variables can be 
obtained from the stochastic WEFS nexus simulation results. 

To quantify the uncertainty of the state variables of the WEFS nexus, 
three indices that are the annual average value (x), standard deviation 
(σ), and coefficient of variation (Cv) were adopted as shown in Eqs. (19), 
(20) and (21). 

x =
1
n

∑n

q=1
xq (19)  

σ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
n
∑n

q=1
(xq − x)2

√
√
√
√ (20)  

Cv =
σ
x

(21)  

where xq is the q-th individual in the sample of the state variable and n is 
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the sample size. 

2.4. Uncertainty propagation in the WEFS nexus 

The samples of the state variables of the WEFS nexus can be obtained 
from the stochastic WEFS nexus simulation inputted by the samples of 
water availability. As the stochastic WEFS nexus is nonlinear owing to 
the reservoir operation and heterogenetic input (e.g., water availability 
and water demand), the distributions of the output of the stochastic 
WEFS nexus (e.g., water shortage rate) might not be the same as that of 
the inputs (i.e., the P-III distribution). The normal, lognormal, expo
nential, gamma, Weibull, and generalized extreme value distributions 
were also tested to fit the distribution of water shortage rate. To inves
tigate the uncertainty propagation in the WEFS nexus, the joint distri
butions of water availability and water shortage rates can be used to 
describe the uncertainty propagation. The copula function can link 
multiple independent variables into a multivariate distribution by 
effectively capturing system dependence, and has been extensively 
applied to multivariate uncertainty analysis of complex systems (Nelsen, 
2006; Yin et al., 2018; Zhang et al., 2021b). It can be implemented to 
obtain the joint distributions after determining the distributions of water 
availability and water shortage rate as their marginal distributions ac
cording to the Sklar’s theorem in Eq. (22). 

F(x, y) = C(u, v) (22)  

where F is a joint distribution; C denotes a copula function; u and v 
denote the cumulative density functions of the variables x and y ac
cording to their marginal distribution functions, respectively. The 
Archimedean copula comprising the Gumbel-Hougaard, Clayton, and 

Frank copulas, Gaussian copula, and student copula (also named t 
copula) is easily constructed and can effectively capture extensive 
dependence structures with different desirable properties in hydrologic 
analysis. The copulas above are adopted here to construct the joint 
distributions of water availability and water shortage rate to describe 
the uncertainties propagation in the WEFS nexus. 

Based on the joint distributions constructed by the copula function, it 
is easy to determine the cumulative density functions of water shortage 
rates in the upstream and downstream operational zones under varied 
water availability conditions of the upstream operational zones. The 
propagation of water availability uncertainty within the WEFS nexus or 
from upstream to downstream can be investigated through their con
ditional distribution functions. The effects of water resources allocation 
on the uncertainty propagation in the WEFS nexus are then assessed 
through inputting different water resources allocation schemes. 

3. Case study 

3.1. Study area 

The Hanjiang River is the largest tributary of the Changjiang River. 
The mid–lower basin of Hanjiang River basin (MLHRB) covers 
63,800 km2 (shown in Fig. 3). The Danjiangkou reservoir, the water 
source of the middle route of the South–North water transfer project in 
China, is located at the upper boundary of MLHRB. The water avail
ability in the MLHRB is thereby significantly affected by the reservoir 
operation of the water transfer project. The energy consumption in the 
MLHRB is considerable due to the large population and industry. As 
agriculture in the MLHRB is developed, the MLHRB is taken as one of the 

Fig. 3. The map of mid–lower reaches of the Hanjiang River basin.  
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nine major commodity grain bases in China. The interconnections across 
water, energy, food, and society systems in the MLHRB are intensifying 
due to socioeconomic development. With fast urbanization, the conflicts 
between the increasing the demands of water, energy and food and their 
supply capacities are aggravating, which has led to rising social concerns 
about resources shortages. The resources management strategy for 
water, energy and food based on the WEFS nexus is desirable to increase 
resource use efficiencies and benefits in production and consumption in 
the MLHRB. However, under the impacts of human activities and 
climate change, the water availability in the MLHRB exhibits strong 
uncertainty (Liu et al., 2018; Zeng et al., 2021). The water availability 
uncertainty can challenge the water, energy and food safeties in local 
area through the WEFS nexus, and may further propagate to down
stream areas based on hydrologic connections. The downstream water, 
energy and food systems thus may be altered. Therefore, the MLHRB is 
taken as the study area to investigate the uncertainty propagation in the 
WEFS nexus. 

Twenty-eight operational zones were sketched out by the superim
position of administrative units and sub-basins to maintain consistent 
socioeconomic and hydrological data in the operational zones. Five 
types of water users (i.e., municipal domesticity, rural domesticity, in
dustry, agricultural, and in-stream ecology water users) were taken in 
each operational zone, resulting in 140 water users in the water re
sources allocation model. Seventeen medium and large size reservoirs (i. 
e., the total storage is more than 10 million m3) and two water transfer 
projects were taken to regulate water availability in water resource 
allocation. The storage of all 17 reservoirs was 37.3 billion m3. The 
operational zones, reservoirs, and water transfer projects within the 
water system in the MLHRB were sketched, as shown in Fig. 4. 

3.2. Data sources 

The WEFS nexus simulation was mainly driven by the hydrological 
and socioeconomic data. The monthly water availability data of each 
operational zone from 1956 to 2016 were obtained from the Changjiang 

Water Resources Commission (CWRC, 2016). The characteristics of the 
17 reservoirs were retrieved from the Hubei Provincial Department of 
Water Resources (HPDWR, 2014) and were listed in Tables S1. The so
cioeconomic data from 2010 to 2019 were collected from the yearbooks 
of Hubei Province, including the annual population, GDP, crop area, 
water use quota, energy use quota, and crop yield, which were available 
at the Statistical Database of Chinese Economic and Social Development 
(http://data. cnki.net/). Notably, the agricultural water use quota is 
related to the precipitation frequency. Four typical exceedance fre
quencies (i.e., P = 50%, 75%, 90%, and 95% are related to the wet, 
normal, dry, extreme dry years, respectively), were estimated based on 
the frequency analysis method to predict the agricultural water demand 
series. These historical data were further inputted into the WEFS nexus 
model to predict the co-evolution of the WEFS nexus during 2010–2070 
(Table 1). 

3.3. Scenarios with water resources allocation schemes 

Combining the water availability and water resources allocation 
schemes, seven scenarios were set for the uncertainty analysis of the 
WEFS nexus as listed in Table 2. Scenario I was set as the reference one. 
Its water resources allocation scheme and the calibrated parameters for 

Fig. 4. The sketch graphic of mid–lower reaches of the Hanjiang River basin.  

Table 1 
Forms of Gumbel-Hougaard, Clayton, Frank, Gaussian, and t copula functions.  

Type Copula expression Range of θ 

Gumbel-Hougaard exp{ − [(− ln uθ) + (− ln vθ)]
1/θ

} [1, ∞ ) 
Clayton max [(u− θ + v− θ − 1)− 1/θ

,0] (0, ∞) 
Frank 

−
1
θ

ln
[

1 +
(e− θu − 1)(e− θv − 1)

(e− θ − 1)

] R\0 

Gaussian Φθ [Φ− 1(u),Φ− 1(v)] [− 1, 1] 
t tθ,k[t− 1

k (u), t− 1
k (v)] [− 1, 1] 

where θ is a parameter to measure the degree of correlation between u and v; Φ is 
the standard normal distribution function; t is the student distribution function 
with k degree of freedom. 
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the deterministic process of the WEFS nexus simulation were set by Zeng 
et al. (2022). The water availability was based on the historical record, 
while its WEFS nexus simulation was stochastic in scenario I. If there was 
no water resources allocation model and the water availability data were 
sampled from its distribution in the WEFS nexus simulation, the water 
availability uncertainty was analyzed for the WEFS nexus as scenario II 
after setting the critical values for water shortage rates from 0.07 to 0.15 
to avoid the explosion of environmental awareness (Zeng et al., 2022). If 
there was the water resource allocation model in the WEFS nexus 
simulation, scenario III was set to analyze the impacts of water avail
ability uncertainty on the WEFS nexus by comparing it with the sce
narios II. The reservoir release multiplier (Qrelease) was the ratio of the 
amount of water released from reservoir to that under the reference 
scenario according to reservoir operation rules. The Qrelease was used to 
indicate different water resources allocation schemes. Scenarios IV, V, 
VI, and VII were set to discuss the response of the WEFS nexus simula
tion to different water resources allocation schemes. According the 
sensitivity analysis results, the reservoirs release multiplier was set be
tween 0.5 and 1.5 (Zeng et al., 2022). Scenarios IV, V, VI, and VII were 
set with their Qrelease at 0.5, 0.75, 1.25, and 1.5, respectively. 

4. Results and discussion 

The uncertainty of the WEFS nexus in the MLHRB was analyzed at 
monthly time step. The co-evolution of the WEFS nexus was from 2010 
to 2070. Specifically, an initial parameter sensitivity analysis for the 
stochastic WEFS nexus was conducted to determine the noise intensities 
of the governing equations, as described in Section 2.2. The annual 
water availability from 1956 to 2016 was used to approximate the PDF 
of water availability. According to the monthly ratios of water avail
ability based on the historical hydrological data, monthly water avail
ability was obtained and inputted into the stochastic WEFS nexus 
simulation. The size of the Monte Carlo sampling was set to 1000 and the 
sample was tested to capture the PDFs of the state variables of the WEFS 
nexus, which were shown in Fig. S1. The outputs from the stochastic 
WEFS nexus simulation were used to analyze the uncertainty of the 

WEFS nexus. The joint and conditional distributions of water availability 
and water shortage rates at upstream and downstream operational zones 
were derived through copula function to analyze the uncertainty prop
agation in the WEFS nexus under the seven scenarios. 

4.1. Uncertainty sources of the WEFS nexus in the MLHRB 

The noise intensities are the key parameters for the stochastic process 
in the WEFS nexus simulation as presented in Eqs. (10)–(16). To ensure 
the co-evolution of the WEFS nexus within the rational intervals, an 
initial sensitivity analysis of the noise intensities was conducted to 
determine their values as listed in Table 3. The rational intervals of the 
socioeconomic state variables (i.e., population, GDP, crop area, water 
use quota, energy use quota, and crop yield) were based on their his
torical data, and all their noise intensities were no more than 0.005. 
There were no historical data for environmental awareness, as envi
ronmental awareness was a subjective variable that describes the soci
etal perceptions of environmental degradation within the prevailing 
value systems. Environmental awareness was often reflected by media 
focus, and was thus accompanied with larger uncertainty than the var
iables with historical data. The noise intensity of environmental 
awareness was thus assumed to be 0.05 according to the initial sensi
tivity analysis. 

The parameters of the P-III distribution for the total water avail
ability in the entire MLHRB were estimated by the maximum likelihood 
estimation. Parameters α, β, and a0 values were 9.60, 0.19 billion m-3 

and 0.26 billion m3, respectively. It was taken as the optimal distribution 
of the total water availability, with the RMSE of 0.0312. Thus, the PDF of 
the total water availability in the entire MLHRB was bell-shaped and 
positive-partial as shown in Fig. 5, and the total probability between 25 
and 70 billion m3 was more than 95%. The coefficients of variation (Cv) 
and skewness (Cs) were 0.645 and 0.321, respectively. The ratio of Cs to 
Cv was 2.01. The p-value was 0.8795 in the K–S test with a 95% confi
dence level, suggesting that the optimal P-III distribution was capable to 
describe the water availability uncertainty and laid the foundation for 
Monte Carlo sampling. 

4.2. Effects of water resources allocation on the uncertainty of the WEFS 
nexus at the whole MLHRB 

There are seven primary state variables in the WEFS nexus that are 
water demand, energy demand, food production, water supply rate, 
energy supply rate, food supply rate, and environmental awareness. 
These seven state variables were selected to investigate the potential 

Table 2 
Scenarios for the effects of water resources allocation on the uncertainty in the 
WEFS nexus a.  

Scenario Water 
availability 

Water resources 
allocation model 

Parameter setting 

I WA0 Yes Calibrated values (Zeng 
et al., 2022) 

II WAx No Critical values for water 
shortage rate is 0.15; 
others are calibrated 
values 

III WAx Yes Calibrated values (Qrelease 

is 1.00) 
IV WAx Yes Qrelease is 0.50; others are 

calibrated values 
V WAx Yes Qrelease is 0.75; others are 

calibrated values 
VI WAx Yes Qrelease is 1.25; others are 

calibrated values 
VII WAx Yes Qrelease is 1.50; others are 

calibrated values  

a WA0 is the water availability from the historical hydrological data, while 
WAx is the water availability sampled from its distribution for the uncertainty 
analysis. 

Table 3 
Noise intensities for the stochastic WEFS nexus.  

Variable tsP tsG tsCA tsqwu tse tspro tsEN 

Noise intensity 
value 

0.005 0.003 0.005 0.002 0.003 0.001 0.05  Fig. 5. The PDF of the optimal P-III distribution of the total water availability 
of the whole MLHRB. 
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effects of the water resources allocation on the total uncertainty of the 
WEFS nexus. The water supply priorities in the IRAS model from high to 
low were assigned as municipal and rural domesticity, in-stream ecol
ogy, industrial and agricultural users according to the Integrated Water 
Resources Planning of Hanjiang River Basin (CWRC, 2016). Table 4 
listed water demand and water supply resulting from the water re
sources allocation model under seven scenarios. Table 5 listed the 
remaining five state variable values (i.e., energy demand, food pro
duction, energy supply rate, food supply rate, and environmental 
awareness) that were outputted from the WEFS nexus simulation. The 
average x and standard deviation σ from the samples quantified their 

uncertainties throughout the co-evolution process. To illustrate the 
evolution processes of the state variables of the stochastic WEFS nexus 
under the impacts of water availability uncertainty and water resources 
allocation, the trajectories of the average values and the intervals at 95% 
confidence level under scenarios I, II, and III were determined and 
shown in Fig. 6. 

4.2.1. Response of the uncertainty of the WEFS nexus to water resources 
allocation 

To investigate the stochasticity of the WEFS nexus, the results of 
scenario I showed that the co-evolution of the WEFS nexus simulation 

Table 4 
Water demand and water supply rate of every user resulted from water resources allocation model (Million m3).  

Scenario Variable Municipal 
domesticity 

Rural 
domesticity 

Industry Agriculture In-stream ecology Total of all water users 

I Demand xwd 387 181 6362 6314 3779 17,022 
σwd 11 5 108 176 0 233 

Supply xws 386 181 5728 5909 3695 15,901 
σws 11 5 94 158 1 205 

Supply rate (%) xwsr 99.78 99.81 90.11 93.65 97.79 93.45 
σwsr 0.01 0.01 0.06 0.12 0.02 0.08 

II Demand xwd 297 143 1751 5876 3779 11,845 
σwd 45 19 498 611 0 715 

Supply xws 271 130 1333 4939 3290 9985 
σws 42 18 422 589 90 761 

Supply rate (%) xwsr 91.28 91.26 79.19 84.27 87.06 84.76 
σwsr 0.36 0.40 4.35 3.99 2.39 3.37 

III Demand xwd 379 178 5456 6169 3779 15,961 
σwd 13 6 800 411 0 896 

Supply xws 378 177 4901 5752 3682 14,897 
σws 13 6 734 418 41 888 

Supply rate (%) xwsr 99.72 99.77 90.03 93.41 97.43 93.45 
σwsr 0.14 0.11 1.72 2.40 1.10 1.78 

IV Demand xwd 370 174 4375 6149 3779 14,847 
σwd 16 7 982 449 0 1003 

Supply xws 369 173 3895 5696 3653 13,794 
σws 16 7 888 460 54 977 

Supply rate (%) xwsr 99.71 99.76 89.47 92.81 96.66 93.11 
σwsr 0.15 0.12 2.10 2.75 1.43 2.12 

V Demand xwd 377 177 5024 6156 3779 15,513 
σwd 14 6 877 416 0 954 

Supply xws 376 176 4497 5715 3670 14,440 
σws 14 6 798 426 46 936 

Supply rate (%) xwsr 99.71 99.76 89.77 92.99 97.12 93.23 
σwsr 0.15 0.11 1.85 2.60 1.22 1.93 

VI Demand xwd 381 178 5488 6185 3779 16,010 
σwd 14 6 838 444 0 949 

Supply xws 380 178 4937 5777 3688 14,965 
σws 13 6 772 449 40 941 

Supply rate (%) xwsr 99.72 99.78 90.18 93.57 97.59 93.60 
σwsr 0.14 0.11 1.75 2.45 1.07 1.80 

VII Demand xwd 379 178 5380 6181 3779 15,896 
σwd 14 6 878 447 0 986 

Supply xws 378 177 4840 5769 3688 14,859 
σws 14 6 808 453 41 976 

Supply rate (%) xwsr 99.72 99.78 90.19 93.51 97.60 93.61 
σwsr 0.15 0.12 1.82 2.55 1.10 1.87  

Table 5 
Energy demand, food production, energy supply rate, food supply rate, and environmental awareness resulted from the WEFS nexus simulation.  

Variable Scenario I II III IV V VI VII 

Energy demand (Million kw*h) xec 1745 515 1521 1248 1412 1531 1504 
σec 27 127 199 243 217 209 219 

Food production (Thousand ton) xfp 6529 5572 6362 6309 6327 6391 6389 
σfp 178 624 456 500 463 487 497 

Energy supply rate (%) xesr 92.57 100.00 96.75 98.88 97.84 96.51 96.81 
σesr 1.25 0.00 2.29 1.38 1.86 2.64 2.58 

Food supply rate (%) xfsr 98.88 90.39 97.90 97.38 97.61 97.96 97.88 
σfsr 0.31 7.21 1.93 2.35 2.14 1.91 2.02 

Environmental awareness xE 5.83 14.75 7.46 9.29 8.34 7.23 7.36 
σE 0.63 5.05 2.03 2.55 2.21 2.14 2.21  
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Fig. 6. Intervals of the seven state variables under scenarios I, II, and III at 95% confidence level: (a) water demand, (b) energy demand, (c) food production, (d) 
water supply rate, (e) energy supply rate, (f) food supply rate, and (g) environmental awareness. 
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was slightly altered by the noises. Water demand was directly affected 
by socioeconomic variables (i.e., population, GDP, crop area, and their 
water use quotas) as shown in Fig. 6(a). The average water demand was 
17.02 billion m3 and its standard deviation was 0.23 billion m3. The 
water demand was satisfied and the water supply rate (shown in Fig. 6 
(d)) showed little response to the noises. The uncertainty of the agri
cultural water supply was small, with a standard deviation of 0.12%, 
which accounted for that the food production increased with small un
certainty shown in Fig. 6(c). The average food production was 6529 
thousand tons, with a standard deviation of 178 thousand tons. For the 
energy system, the energy demand in the water supply process with a 
small standard deviation of 27 million kw*h was altered by the water 
supply shown in Fig. 6(b). However, the total planning energy avail
ability was less than the energy demand owing to socioeconomic 
expansion. The energy supply cannot be ensured. And the energy supply 
rate was typically lower than its critical value (i.e., 95% as detailed in 
Zeng et al., 2022), as shown in Fig. 6(e), which led to the accumulation 
of environmental awareness. The variability in the energy supply rate 
contributed to the uncertainty in the evolution of environmental 
awareness as shown in Fig. 6(g). As the environmental awareness often 
kept at a low level, and rarely exceeded its critical value of 8.0 in the 
evolution process shown in Fig. 6(g), the environmental awareness 
feedback on socioeconomic variables was rarely triggered, or only 
triggered with little intensity. Thus, the impacts of the uncertainty of 
environmental awareness owing to its noises on the WEFS nexus were 
not evident. 

The impacts of water availability uncertainty on the stochastic WEFS 
nexus were determined by comparing the differences in the results be
tween scenarios I and III. The WEFS nexus was remarkably altered by the 
water availability uncertainty. The average water demand decreased 
from 17.02 billion m3 under scenario I to 15.96 billion m3 under sce
nario III, while its standard deviation increased from 0.23 to 0.90 billion 
m3. Although there were few differences in the supply rates of water, 
energy, and food between scenarios I and III, their standard deviations 
increased remarkably. The average environmental awareness increased 
from 5.83 under scenario I to 7.46 under scenario III, and its standard 
deviation simultaneously increased from 0.63 to 2.63. The increasing 
uncertainty of environmental awareness further led to larger variability 
of the co-evolution of the WEFS nexus through environmental awareness 
feedback under the impacts of noises. 

The differences between the scenarios II and III can indicate the 
impacts of water resources allocation on the uncertainty of the WEFS 
nexus. The purpose of the water resources allocation model was to 
ensure water supply. The total water supply rate increased from 84.74% 
to 93.45%, and the standard deviation decreased from 3.37% to 1.78% 
under the scenarios II and III, respectively. As the water resources 
allocation model was integrated with scenarios III, the water supply 
rates of industrial and agricultural users increased from 79.19% and 
84.27% to 90.03% and 93.4%, respectively. Their standard deviations 
also decreased from 4.35% and 3.99% to 1.72% and 2.40%, respec
tively. Thus, the uncertainties decreased. As much water was stored in 
the reservoirs during the flood season, and released during the dry 
season, the water shortage was remarkably alleviated due to the uneven 
temporal distribution of water availability. The impacts of the vari
ability of the monthly water availability were also decreased, as the 
water inflow was stored in reservoirs based on seasonal or annual 
operational rules. The impacts of the uncertainties of water availability 
on water supply were thereby alleviated through reservoir operation 
under the scenarios III. With the increased agricultural water supply 
rate, the food production increased from 5572 to 6362 thousand tons. 
The considerable average environmental awareness caused by the water 
shortage and food shortage thereby decreased from 14.75 to 7.46, with 
smaller uncertainty. Negative feedback driven by environmental 
awareness then resulted in lower uncertainty for the co-evolution of the 
WEFS nexus. 

There are four phases in the co-evolution of the WEFS nexus when 

water resources allocation was considered: expansion, contraction, 
recession, and recovery phases (Zeng et al., 2022). As the WEFS nexus 
performed differently in different phases, the response of WEFS nexus 
uncertainty to water resources allocation was analyzed in these four 
phases for the entire MLHRB under scenario III. In the expansion phase 
(i.e., 2010–2032), most water and energy demands can be satisfied. The 
accumulation of environmental awareness was mainly due to food 
shortages, as shown in Fig. 6(f). As water resources allocation can 
effectively alleviate the impacts of water availability uncertainty on 
water supply, the uncertainties in agricultural water supply and food 
production decreased. Although environmental awareness increased 
with increasing water and food shortages, the 95% confidence interval 
of environmental awareness was small as shown in Fig. 6(g). The so
cioeconomic sectors and the WEFS nexus can expand with a high con
fidence level in the expansion phase. However, during the contraction (i. 
e., 2033–2039) and recession phases (i.e., 2040–2045), as water avail
ability could not cover the increasing water demand, most water was 
directly released from the reservoir rather than being stored in reservoir. 
Water availability was poorly regulated by reservoir. Thus, the water 
availability uncertainty directly impacted the water supply and 
increased the uncertainties of the evolution of energy demand and the 
food production through the WEFS nexus shown in Fig. 6(b) and (c). As 
the environmental awareness was positively correlated with water and 
energy shortage rates, environmental awareness exhibits high uncer
tainty due to the high uncertainties of water and energy shortage rates in 
the contraction and recession phases. The evolution of socioeconomic 
variables was altered by environmental awareness feedback under the 
impacts of noises. The water demand projected by the socioeconomic 
variables thereby also exhibited uncertainty. Although environmental 
awareness decreased in the recovery phase (i.e., 2046–2070), its un
certainty was not negligible in the co-evolution of the WEFS nexus 
through the dynamics of the state variables at the end of the recession 
phase. Therefore, water resources allocation can effectively decrease the 
water supply uncertainty through reservoirs operation. The uncertainty 
in the WEFS nexus also decreases. However, if the water demand ex
ceeds the regulating capacity of the water system, the reservoirs can 
poorly regulate the water flow, and the stress on water supply increases. 
Water availability uncertainty can remarkably impact the water supply, 
and leads to the high uncertainties in the WEFS through its nexus. 

4.2.2. Impacts of water resources allocation schemes on the uncertainty of 
the WEFS nexus 

To obtain the optimal water resources allocation scheme, it was 
necessary to conduct the different water resources allocation schemes 
for the uncertainty of the WEFS nexus. The differences among scenarios 
III, IV, V, VI, and VII indicated the sensitivities of the uncertainty of the 
WEFS nexus to the reservoir release multipliers (Qrelease). There were few 
differences in the water supply rate, ranging from 93.11% to 93.61% 
among these five scenarios. Water availability was abundant across the 
entire MLHRB, so the water demand was often satisfied. The standard 
deviations of water supply rate were 2.12%, 1.93%, 1.78%, 1.80%, and 
1.87% under the scenarios IV, V, III, VI, and VII, respectively, and they 
were not linear with the Qrelease values. As less water was released with a 
smaller Qrelease value (e.g., the Qrelease of scenarios IV, and V were 0.50, 
and 0.75, respectively), more water was stored in the reservoir. Once the 
water level exceeded the normal water level of the reservoir, water was 
directly released downstream through the spillway. More water released 
from reservoir with larger Qrelease values (e.g., the Qrelease under scenarios 
VI, and VII were 1.25, and 1.50, respectively), and the regulation on 
water availability through the reservoir decreased. The water avail
ability uncertainty slightly decreased. Thus, the uncertainty in the cor
responding water supply cannot be efficiently alleviated by reservoir 
operation. The standard deviations of energy demand and food pro
duction further increased from 199 million kw*h and 456 thousand tons 
under scenario III to 209, 219 million kw*h, and 487, 497 thousand tons 
under scenarios VI and VII, respectively. These uncertainties in water 
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supply, energy demand and food production have influenced socioeco
nomic expansion through environmental awareness feedback. The un
certainty in the corresponding socioeconomic water demand has 
increased. Therefore, policymakers should pay more attention to the 
regulating capacity of reservoirs in water resources management in a 
basin, which is an effective way to decrease the impacts of water 
availability uncertainties on water demand to ensure the co-evolution of 
the WEFS nexus. 

4.3. Effects of water resources allocation on the uncertainty propagation 
in the WEFS nexus within the MLHBR 

Water resources allocation can effectively alleviate the impacts of the 
water availability uncertainty on the water supply through reservoir 
operation to ensure the co-evolution of the WEFS nexus. However, as the 
water flows from upstream to downstream, water availability uncer
tainty also propagates from upstream to downstream. The responses of 
water supply, energy demand and food production to the uncertainty of 
water availability differed in upstream and downstream areas owing to 
the uneven distribution of reservoirs within the basin. According to the 
responses of the water supply from the water resources allocation model 
to the water availability uncertainty in every operational zone, the 
operational zones in the MLHRB can be categorized into three types 
shown in Fig. 7. If the water supply could be assured and impacted by 
the water availability uncertainty in an operational zone, the zone was 
taken as type A. If the water shortage can be effectively alleviated by 
water resources allocation, and the impacts of water availability un
certainty on water supply can be remarkably alleviated, the zone was 
taken as type B. There was no negligible water shortage in a zone, and its 
water supply was remarkably affected by the water availability uncer
tainty, the zone was taken as type C. Considering the hydrologic con
nections between the upstream and downstream zones, four types of 

routes for uncertainty propagation within the MLHRB can be found. The 
route (i) was from type A to type A zones, whereas the route (ii) was 
from type B to a type A zones. The route (iii) was from type B to type B 
zones, whereas the route (iv) was from type C to type A zones. Specif
ically, eight operational zones selected to show the uncertainty propa
gation in the WEFS nexus within the MLHRB: Z25 (Xiantao) and Z26 
(Wuhan) with the route (i), Z2 (Shennongjia) and Z3 (Baokang) with the 
route (ii), Z19 (Jingshan) and Z21 (Yingcheng) with the route (iii), and 
Z13 (Jingmenshuanghe) and Z14 (Zhongxiangshuanghe) with the route 
(iv). The average and standard deviation values of the water demand, 
water supply rate, energy demand, and food production were listed in  
Table 6. As water availability for an operational zone contains water 
flows from upstream in addition to the local water availability, Table 7 
listed the water availability from an upstream zone. Thus, water avail
ability uncertainty can propagate from upstream to downstream. The 
uncertainty of the WEFS nexus varied in different phases during the co- 
evolution of the WEFS nexus as discussed in Section 4.2.1. The uncer
tainty emerged in the contraction phase, which was the vital phase. 
Therefore, a representative year 2035 in the contractions phase was 
selected to study the uncertainty propagation. The water flowing from 
the upstream to downstream operational zones were listed in Table 7. 

4.3.1. Response of the uncertainty propagation in the WEFS nexus to water 
resources allocation 

The response of uncertainty propagation in the WEFS nexus to water 
resources allocation varied through different routes. The uncertainty of 
upstream water availability was remarkably alleviated when it propa
gated downstream through the routes (i), (ii), and (iv), whereas it was 
not efficiently alleviated through the route (iii) in the case study. Taking 
the uncertainty propagation routes (iv) as an example, the water supply 
rate in Z13 was slightly increased by water resources allocation, from 
62.32% under scenario II to 65.40% under scenario III, as there was few 

Fig. 7. Spatial distributions of operational zones of type A, B, and C.  
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water storage capacity for regulating the local water availability by the 
reservoir operation. The impacts of water availability uncertainty on the 
water supply slightly increased, and the standard deviation of the water 
supply rate increased from 9.20% to 10.49%. The uncertainty of the 
water released from Z13 increased, with the coefficients of variation 
increasing from 0.12 under scenario II to 0.13 under scenario III. The 
water released from Z13 then flowed into the downstream Z14 through 
the river network. Interestingly, the water supply in Z14 was ensured, 
and the uncertainty of water flow from Z13 had little impacts on its 
water supply. As the main water availability source in Z14 was from the 
main stream of Hanjiang River, there was a large water storage capacity 
from the R3 Danjiangkou reservoir (with a total storage of 33.91 billion 
m3), as shown in Fig. 3, to regulate the water availability uncertainty 
and ensure water supply. The impacts of the water availability 

uncertainty in upstream Z13 on the water supply in downstream Z14 
decreased. The water supply rates in Z14 under scenarios II, and III were 
greater than 91.62%, and their standard deviations were less than 
0.64%. The water supply rates in Z13 were less than 65.40%, and the 
corresponding standard deviations were greater than 10.49%. Thus, 
water availability uncertainty was alleviated through the routes (iv) 
from Z13 to Z14. A similar uncertainty propagation can be found in 
routes (i) from Z25 to Z26, and route (ii) from Z2 to Z3. Most of the water 
availability in Z25 and Z26 was from the main stream of the Hanjiang 
River that was regulated by the Dangjiangkou reservoir. Their water 
supplies were ensured, and the impacts of uncertainty of local water 
availability were decreased by the upstream reservoir operation. If the 
water resources allocation model was considered, the water supply rates 
in Z25 and Z26 were more than 99% with small standard deviations. As 

Table 6 
Water demand, water supply rate, energy demand, and food production in the eight operational zones.  

Scenario Variable Z2 Z3 Z13 Z14 Z19 Z21 Z25 Z26 

I Water demand 
(Million m3) 

xwd 315 204 192 249 520 369 1237 1607 
σwd 4 1 4 2 7 7 15 24 

Water supply 
rate (%) 

xws 78.08 100.00 65.43 100.00 89.83 98.55 99.98 99.94 
σws 0.45 0.00 0.72 0.00 0.49 0.23 0.01 0.01 

Energy demand 
(Million kw*h) 

xec 8 4 4 22 94 27 214 230 
σec 0 0 0 0 1 0 4 4 

Food production 
(Thousand ton) 

xfp 6 29 35 81 365 274 712 327 
σfp 0 1 1 2 10 7 20 9 

II Water demand 
(Million m3) 

xwd 275 196 170 193 248 307 685 975 
σwd 13 2 12 8 31 21 62 79 

Water supply 
rate (%) 

xws 67.80 90.21 62.32 91.62 84.42 86.06 91.03 89.64 
σws 8.19 1.94 9.20 0.64 4.63 4.48 1.24 2.93 

Energy demand 
(Million kw*h) 

xec 2 2 1 7 26 12 61 62 
σec 1 0 0 2 7 2 16 17 

Food production 
(Thousand ton) 

xfp 6 24 32 69 332 224 606 273 
σfp 1 3 5 7 42 27 66 31 

III Water demand 
(Million m3) 

xwd 306 202 187 238 466 356 1128 1479 
σwd 10 2 8 10 46 16 94 108 

Water supply 
rate (%) 

xws 79.01 99.99 65.40 100.00 90.86 97.09 99.83 99.37 
σws 7.86 0.07 10.49 0.03 5.17 3.30 0.35 1.03 

Energy demand 
(Million kw*h) 

xec 7 3 3 19 82 25 185 198 
σec 2 0 1 2 12 2 25 28 

Food production 
(Thousand ton) 

xfp 6 28 34 79 363 262 695 317 
σfp 1 2 5 5 38 22 48 23 

IV Water demand 
(Million m3) 

xwd 298 201 183 226 404 345 1001 1337 
σwd 11 2 9 11 55 16 112 124 

Water supply 
rate (%) 

xws 73.51 99.73 65.99 99.98 87.46 95.05 99.80 99.36 
σws 9.01 0.67 10.49 0.05 7.16 4.70 0.36 1.04 

Energy demand 
(Million kw*h) 

xec 5 3 3 16 63 21 151 161 
σec 1 0 1 3 13 3 31 34 

Food production 
(Thousand ton) 

xfp 6 28 35 79 351 255 692 315 
σfp 1 2 5 6 44 25 52 24 

V Water demand 
(Million m3) 

xwd 303 201 185 233 441 352 1077 1421 
σwd 10 2 8 10 50 16 102 115 

Water supply 
rate (%) 

xws 78.17 99.98 65.67 99.99 88.96 96.19 99.82 99.37 
σws 7.87 0.14 10.49 0.03 6.15 3.89 0.34 1.03 

Energy demand 
(Million kw*h) 

xec 7 3 3 18 74 23 172 183 
σec 2 0 1 3 12 2 28 30 

Food production 
(Thousand ton) 

xfp 6 28 34 79 355 258 692 316 
σfp 1 2 5 5 40 23 48 23 

VI Water demand 
(Million m3) 

xwd 307 202 187 239 468 357 1132 1484 
σwd 11 2 9 10 48 17 97 114 

Water supply 
rate (%) 

xws 78.80 99.97 65.36 99.99 91.67 97.26 99.82 99.37 
σws 8.07 0.15 10.50 0.04 5.05 3.35 0.36 1.04 

Energy demand 
(Million kw*h) 

xec 7 3 3 19 83 25 186 199 
σec 2 0 1 3 12 2 26 29 

Food production 
(Thousand ton) 

xfp 6 28 34 79 368 264 696 317 
σfp 1 2 5 6 38 23 51 25 

VII Water demand 
(Million m3) 

xwd 306 202 187 237 462 356 1119 1470 
σwd 11 2 9 11 51 18 103 119 

Water supply 
rate (%) 

xws 78.65 99.95 65.40 99.99 91.29 96.95 99.82 99.36 
σws 8.19 0.22 10.51 0.05 5.53 3.64 0.37 1.06 

Energy demand 
(Million kw*h) 

xec 7 3 3 19 81 24 183 195 
σec 2 0 1 3 13 2 28 31 

Food production 
(Thousand ton) 

xfp 6 28 34 79 367 263 696 317 
σfp 1 2 5 6 40 24 53 25  
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the water flowed along with the route (ii) from Z2 to Z3 with high un
certainty and the standard deviations were 15 and 14 million m3, and 
the coefficients of variation of 0.10 and 0.08 under scenario II and 
scenario III, respectively. Water availability in Z3 was regulated by the 
R1 Sanliping and R2 Siping reservoirs, respectively as shown in Fig. 3. 
The water supply rate in Z3 was 99.99%, and its standard deviation was 
0.07% under the scenario III, whereas the water supply rate was 
79.01%, and its standard deviation was 7.86% in Z2. The impacts of the 
upstream water availability uncertainty on water supply were allevi
ated. As the water storage capacities in both Z19 and Z21 were insuf
ficient to cover the corresponding water demands, and they were 
connected through the route (iii), the upstream water availability un
certainty did not fade as the standard deviations of the water supply rate 
were 4.68% and 4.63% in Z19 and Z21, respectively. To quantify the 
upstream water availability uncertainty propagation to downstream, the 
joint distributions of both the water availability and water shortage rate 
in Z19, water availability in Z19 and the water shortage rate in Z21 
under scenarios II, and III were estimated. Their conditional distribu
tions were determined based on the joint distributions as shown in  

Figs. 8, and 9, respectively. 
As there was no water resources allocation model in the scenario II, 

the water shortage rates in Z19 fell between 8% and 45%. There were 
little differences between the cumulative density function curves shown 
in Fig. 8(a), if the water availability was less than 800 million m3. The 
water shortage rate was typically greater than 15%, which was the 
critical value of evoking the water shortage awareness accumulation 
under scenario II, leading to an increase in environmental awareness. 
The evolution of environmental awareness was accompanied by uncer
tainty due to the noises as discussed in Section 4.2.1. If the environ
mental awareness value exceeded its critical value, environmental 
awareness feedback impacted the evolution of water demand by regu
lating socioeconomic expansion. The uncertainty then propagated into 
the water demand and further into the water supply and water shortage 
rate. Therefore, the water shortage rate uncertainty was considerable 
because of the model stochasticity when water availability was low, and 
further challenged the whole WEFS through its nexus. Since the water 
availability was greater than 800 million m3, the water shortage 
decreased remarkably. The water shortage rates were often less than its 
critical value as shown in Fig. 8(a). Environmental awareness decreased, 
and the impacts of environmental awareness feedback on socioeconomic 
variables also diminished. The uncertainty of water demand decreased, 
and the uncertainty of the water shortage rate decreased. The water 
shortage rates interval for the most distribution gradually narrowed 
from 8%–45% to 8%–12% as the water availability increased from 800 
to 1400 million m3 shown in Fig. 8(a). The uncertainty of the co- 
evolution of the WEFS decreased through its nexus. If the water avail
ability was greater than 1400 million m3, the corresponding water 
shortage rates were less than the critical value. Little environmental 
awareness accumulated, and environmental awareness feedback was 
rarely triggered. The uncertainty of the WEFS nexus was mainly due to 
the noises in the dynamics of socioeconomic variables, and its impacts 
on the WEFS nexus were much smaller than those from the water 
availability uncertainty as discussed in Section 4.1. As the water 
released from Z19 flowed into Z21 through the route (iii), the water 
availability uncertainty in Z19 propagated into Z21 from upstream to 
downstream. The average value and standard deviation of the water 
flowing from Z19 to Z21 were 126 and 24 million m3, respectively with 
the coefficient of variation of 0.19. The uncertainty of the water supply 
in Z21 increased owing to the uncertainty propagation of the water 
availability in Z19. If the water availability was less than 800 million m3, 
the water shortage rate in Z21 fell between 8% and 25% as shown in 
Fig. 8(b). The water supply uncertainty in Z21 was remarkably increased 
by the uncertainty propagation of water availability in upstream Z19, 
which was the response of the water supply in Z21 to the water 

Table 7 
The amount of water flowed from the upstream to downstream operational 
zones (million m3).  

Scenario Variable Z25 to 
Z26 
by route 
(i) 

Z2 to Z3 
by route 
(ii) 

Z19 to Z21 
by route 
(iii) 

Z13 to Z14 
by route 
(iv) 

I xrw 905 187 310 79 
σrw 10 1 3 1 
Cvrw 0.01 0.00 0.01 0.01 

II xrw 469 141 126 66 
σrw 41 15 24 8 
Cvrw 0.09 0.10 0.19 0.12 

III xrw 827 183 279 77 
σrw 68 14 32 10 
Cvrw 0.08 0.08 0.11 0.13 

IV xrw 736 167 228 75 
σrw 81 17 34 10 
Cvrw 0.11 0.10 0.15 0.13 

V xrw 791 180 256 76 
σrw 73 14 33 10 
Cvrw 0.09 0.08 0.13 0.13 

VI xrw 830 182 282 77 
σrw 70 15 34 10 
Cvrw 0.08 0.08 0.12 0.13 

VII xrw 820 182 277 76 
σrw 74 15 36 10 
Cvrw 0.09 0.08 0.13 0.13  

Fig. 8. The conditional distributions of the water availability and water shortage rate in Z19 and Z21 under scenario II: (a) the cumulative density functions (derive 
from Frank copula) of the water shortage rate under varied water availability (million m3) in Z19; (b) the cumulative density functions (derive from Frank copula) of 
the water shortage rate in Z21 under varied water availability (million m3) in Z19. The similar Figs. 9, 10, 11, 12 and 13 were based on the results from the scenarios 
III, IV, V, VI and VII, respectively. 
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availability uncertainty in Z19. 
As the water resources allocation model was taken under scenario III, 

the water shortage in Z19 decreased through reservoir operation, 
benefiting the co-evolution of the WEFS nexus. The average values of 
water demand, energy demand, and food production remarkably 
increased from 248 million m3 to 466 million m3, 26 million kw*h to 82 
million kw*h, and 332 thousand tons to 363 thousand tons, respectively. 
The average water supply rate increased from 84.42% to 90.86%, and 
the corresponding water demand significantly increased. The critical 
water availability to ensure the water supply in Z19 decreased from 
1400 million m3 under scenario II to 1250 million m3 under scenario III, 
as the local water availability was effectively regulated through water 
resources allocation. The water shortage rate was less than 7% and did 
not exceed its critical value shown in Fig. 9(a), which was much smaller 
than the corresponding water shortage rate of 15% shown in Fig. 8(a). 
Thus, there was a low-level of environmental awareness. The co- 
evolution of the WEFS nexus was slightly affected by environmental 
awareness feedback on socioeconomic expansion. The uncertainty in 
water shortage rate increased with a decrease in water availability when 
the water availability ranged from 1250 to 800 million m3. The interval 
of the water shortage rate expanded from 0–7% to 0–30% shown in 
Fig. 9(a), whereas the corresponding interval expanded from 8%–12% to 
8%–45% shown in Fig. 8(a). As the decreasing water demand was often 
less than the decreasing water availability, the water shortage rate might 
have exceeded its critical value in evoking the accumulation of envi
ronmental awareness. Thus, water demand uncertainty increased with 
increasing environmental awareness and further propagated into the 
WEFS through its nexus. If the water availability was less than 800 
million m3, the water shortage was considerable and cannot be 
completely relieved by water resources allocation. The water shortage 
rate fell between 0 and 30% shown in Fig. 9(a) and easily exceeded the 
critical value. There was high-level environmental awareness, which 
further altered the evolution of socioeconomic variables for water de
mand projection through its feedback under the impacts of noises. 
Owing to the water demand uncertainty, the water supply uncertainty 
increased, and the uncertainty of the WEFS further increased through its 
nexus. As the water supply in Z19 was ensured by water resources 
allocation, the average value of the water flowing from Z19 to Z21 
increased from 126 to 279 million m3, and the coefficient of variation 
decreased from 0.19 to 0.11. The water supply in Z21 was regulated by 
the R17 Gaoguan reservoir shown in Fig. 3, and the impacts of the water 
availability uncertainty in Z19 on the water supply in Z21 were allevi
ated. The average water supply rate increased from 86.06% to 97.09%. 
The water shortage rate in Z21 mainly fell in the range of 0–7% with 
varied water availability as shown in Fig. 9(b). All water shortage rates 
were below the critical value, and the environmental awareness accu
mulation was rarely evoked. The impacts of the water availability 

uncertainty of upstream Z19 on downstream Z21 were effectively alle
viated through the regulations on water flow by the R16 Huiting 
reservoir in Z19 and R17 Gaoguan reservoir in Z21. The standard de
viation of water supply rate in Z21 decreased from 4.48% to 3.3%. The 
water supply uncertainty had little impacts on the evolution of energy 
demand, and food production. And their standard deviations decreased 
from 2.2 to 2.1 million kw*h, and from 27 to 22 thousand tons, 
respectively. 

Therefore, the water storage capacity is vital in alleviating the un
certainty propagation in the WEFS nexus. The larger the water storage 
capacity size, the greater the alleviation of the water availability un
certainty on water supply through reservoir operation. As environ
mental awareness decreases, the uncertainty from environmental 
awareness feedback decreases during its propagation in the WEFS nexus. 
The smaller the water storage capacity size, the fewer the alleviation of 
water availability uncertainty on water supply. The water availability 
uncertainty propagated into the water supply, and the water supply 
uncertainty increased, particularly when the water availability could not 
satisfy water demand. Thus, environmental awareness increased. Envi
ronmental awareness feedback under the impacts of noises can lead to 
the uncertainty of socioeconomic expansion. The uncertainty further 
propagated into the water demand, and increased the uncertainty of the 
co-evolution of the WEFS of downstream zones through the water 
flowing from upstream into downstream zones. 

The proposed framework for assessing the effects of water resources 
allocation on the uncertainty propagation in the WEFS nexus can aid the 
comprehensive resources management of water, energy and food in 
areas where the WEFS is remarkably altered by upstream water avail
ability uncertainty, especially for the transboundary river basins. As the 
riparian countries have different developmental goals, the different 
water resources management strategies from upstream to downstream 
have become an important issue. For instance, the Mekong River basin 
in Asia (Gao et al., 2021), Nile River basin in Africa (Elsayed et al., 
2020), and Columbia River basin in North America (Zhang et al., 
2021a). Taking the Nile River basin as a case, the WEFS safety of 
downstream Egypt can be severely challenged by the water availability 
uncertainty of upstream Sudan. With the reservoir operation of the 
upstream Aswan Dam, the upstream water availability uncertainty was 
effectively decreased and the water supply was significantly increased, 
which further ensured the rapid socioeconomic expansion of Egypt 
through its nexus (Strzepek et al., 2008). The proposed framework has 
considerable potential for riparian countries’ cooperation in trans
boundary river basins to handle the uncertainty propagation in the 
WEFS nexus. 

Fig. 9. The conditional distributions of water availability and water shortage rate in Z19, and Z21 under the scenario III (the cumulative density functions in (a) and 
(b) were derived from Gaussian and Frank copulas, respectively). 
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4.3.2. Impacts of water resources allocation schemes on the uncertainty 
propagation in the WEFS nexus 

The uncertainty propagation showed little response to the different 
water resources allocation schemes under scenarios III, IV, V, VI, and VII 
through the routes (i), (ii), and (iv). The varied Qrelease values determined 
the amount of water release from the reservoir, and influenced the water 
supply uncertainty as discussed in Section 4.2.2. The average values of 
water flow from upstream to downstream from Z25 to Z26 through the 
route (i), from Z2 to Z3 through route (ii), and from Z13 to Z14 through 
route (iv) ranged from 736 to 827 million m3, from 167 to 183 million 
m3, from 75 to 77 million m3, respectively. In comparison, the corre
sponding standard deviations ranged from 14 to 17 million m3, from 68 
to 81 million m3, from 9.9 to 10.2 million m3, respectively. The water 
availability uncertainties propagated downstream, but were efficiently 
alleviated through the reservoir operation with large water storage ca
pacities in downstream zones as discussed in Section 4.3.1. Thus, water 
supplies were ensured and there were few differences in the water 
supply rates in Z26, Z3, and Z14 under different water resources allo
cation schemes. As the water storage capacities of downstream zones 
through the route (iii) were insufficient to satisfy the water demands, the 
water shortages in downstream zones were related to the Qrelease values. 
The uncertainty propagation of water availability was sensitive to water 
resources allocation schemes through reservoir operation. The condi
tional distributions of water availability and water shortage rate in Z19 
and Z21 reflected the impacts of water resources allocation schemes on 
the uncertainty propagation through the route (iii) as shown in Figs. 10, 
11, 12, and 13 under scenarios IV, V, VI, and VII, respectively. 

The Qrelease value decreased from 1.00 under scenario III to 0.75, and 
0.50 under scenarios V and IV, respectively. The uncertainty in the water 
shortage rates in both Z19 and Z21 increased. A smaller Qrelease value 
indicated the decreased water release from the reservoir. The average 
water supply rate in Z19 decreased from 90.86% under scenario III to 
88.96% and 87.46% under scenarios V and IV, respectively. The corre
sponding standard deviations increased from 5.17% to 6.15% and 
7.16%, respectively. A lager environmental awareness has been accu
mulated. Subsequently, the impacts of environmental awareness feed
back on socioeconomic expansion for water demand projection 
increased. The uncertainty of water demand propagated into the water 
supply through the water resources allocation. The average water flow 
from Z19 to Z21 decreased from 279 million m3 under scenario III to 256 
and 228 million m3 under scenarios V and IV, respectively, while their 
standard deviation increased from 32 to 33 and 34 million m3, respec
tively. Thus, the water supply uncertainty in Z21 increased owing to the 
increasing uncertainty of the water flow from Z19. As the storage ca
pacity of the R17 Gaoguan reservoir was insufficient to alleviate the 
water availability uncertainty propagated from Z19, the WEFS uncer
tainty in Z21 increased through its nexus as discussed in Section 4.3.1. 

The standard deviations of water demand, energy demand, and food 
production in Z21 increased from 46 million m3, 12 million kw*h, and 
38 thousand tons under scenario III, to 50 million m3, 12 million kw*h, 
and 40 thousand tons under scenario V and 55 million m3, 13 million 
kw*h, and 44 thousand tons under scenario IV, respectively. Interest
ingly, the smaller the Qrelease value, the larger the uncertainty of water 
shortage rates, particularly when the water availability was limited as 
shown in Figs. 9, 10 and 11. If the water availability in Z19 was less than 
800 million m3, the interval of water shortage rate in Z19 expanded from 
0% to 33% under scenario III to 0–38% and 0–42% under scenarios V 
and IV, respectively. As the water supply decreased with decreasing 
Qrelease value, the water shortage increased, and further increased the 
environmental awareness. The uncertainty of environmental awareness 
due to its noises propagated into water demand through environmental 
awareness feedback on socioeconomic sectors. Water demand uncer
tainty further increased the uncertainties of the water supply and water 
shortage rate through water resources allocation. There were few dif
ferences between the cumulative density function curves of the water 
shortage rates in Z19 and Z21 as shown in Figs. 9, 10 and 11 when the 
water availability in Z19 was more than 1400 million m3, as their water 
supplies were ensured. 

A similar method can be used to analyze the schemes with larger 
Qrelease values under scenarios VI and VII (e.g., the Qrelease value were 
1.25 and 1.50, respectively). Although water release increased with a 
larger Qrelease value, the water supply in Z19 barely increased. The 
average water supply rate ranged from 90.86% to 91.67%, and the 
standard deviation ranged from 5.05% to 5.17%. It was more difficult to 
maintain the reservoir at its normal water level with a larger Qrelease 
value. Although the water supply can be ensured in the flood season, the 
water supply stress during the dry season increased with limited water 
storage capacity and water availability. Thus, there were few differences 
between the cumulative density function curves of the water shortage 
rates in Z19 and Z21 as shown in Figs. 9, 12 and 13. It was found that the 
uncertainty propagation of water availability was insensitive to the 
water resources allocation schemes. Therefore, policymakers have two 
manners to handle the uncertainty propagation in the WEFS nexus: (a) 
implementing optimal water resources allocation schemes in the area 
with few regulating capacity of the water system within a basin; and (b) 
regulating the local socioeconomic expansion to keep the water demand 
from over-speed increase. As local water safety is ensured, the water 
availability uncertainty propagated from upstream can be effectively 
alleviated, and further the WEFS can be ensured through its nexus. 

5. Conclusion 

This study proposed a framework to assess the effects of water re
sources allocation on the uncertainty propagation in the WEFS nexus for 

Fig. 10. The conditional distributions of water availability and water shortage rate in Z19, and Z21 under scenario IV (the cumulative density functions in (a) and (b) 
were derived from Gaussian and Frank copulas, respectively). 
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the comprehensive management of water, energy and food under un
certainties. The white Gaussian noises were integrated into seven pri
mary governing equations of the system dynamic model for the WEFS 
nexus to express the uncertainty of the model structure, transforming the 
WEFS nexus model from deterministic to stochastic. The copula function 
was adopted to quantify the uncertainty propagation by estimating the 
joint distributions between the water availability and shortage rate in 
the upstream and downstream zones based on the Monte Carlo 

simulation of the stochastic WEFS nexus model. The effects of water 
resources allocation on the uncertainty propagation in the WEFS nexus 
were analyzed by investigating the response of WEFS to different water 
resources allocation schemes. 

According to the results of the case study in the MLHRB, China, water 
availability uncertainty is the main source of the uncertainty in the 
WEFS nexus. A rational water resources allocation scheme can effi
ciently improve water shortage, and diminish the impacts of water 

Fig. 11. The conditional distributions of water availability and water shortage rate in Z19, and Z21 under scenario V (the cumulative density functions in (a) and (b) 
were derived from Gaussian and Frank copulas, respectively). 

Fig. 12. The conditional distributions of water availability and water shortage rate in Z19, and Z21 under scenario VI (the cumulative density functions in (a) and (b) 
were derived from Gaussian and t copulas, respectively). 

Fig. 13. The conditional distributions of water availability and water shortage rate in Z19, and Z21 under scenario VII (the cumulative density functions in (a) and 
(b) were derived from Gaussian and t copulas, respectively). 
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availability uncertainty on water supply through reservoir operation. 
Food production increases remarkably as the agricultural water supply 
is ensured. High-level environmental awareness evoked by water or food 
shortages decreases, and ensures the co-evolution of the WEFS nexus. 
The water availability uncertainty in the upstream zone propagates to 
downstream zone by the water flow through their hydrologic connec
tions. The water storage capacity of a reservoir for water regulation in an 
operational zone is the vital factor in regulating the uncertainty prop
agation within a basin. If there is sufficient water storage capacity in a 
zone, the impacts of water availability uncertainty in the upstream zone 
can be alleviated through reservoir operation. There is no significant 
response of the WEFS through its nexus to different water resources 
allocation schemes. If there is few water storage capacity in a zone, its 
water supply is significantly influenced by water availability uncertainty 
in the upstream zone. Water supply is hardly ensured, and is sensitive to 
different water resources allocation schemes. Water and food shortages 
evoke an accumulation of environmental awareness. Environmental 
awareness feedback under the impacts of model structure uncertainty (i. 
e., the noises) further increases the water demand uncertainty by 
altering socioeconomic expansion, particularly when the water avail
ability is much less than the water demand. Then, the water supply 
uncertainty increases, and propagates into the WEFS through its nexus. 

Water availability uncertainty is the primary uncertainty for the co- 
evolution of the WEFS nexus. In this study, the PDF of water availability 
was estimated by stationary hydrologic frequency analysis method. 
However, the stationary assumption of water availability has been 
remarkably challenged under the impacts of human activities and 
climate change. The nonstationarity of water availability can bring risks 
to the WEFS through its nexus, and further challenge sustainable 
development goals. Therefore, more attention should be paid to the 
uncertainty analysis of the WEFS nexus under nonstationary water 
availability conditions. 
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