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Featured Application: Implementation of an integrated EWMS using a model predictive control
strategy based on fuzzy optimization. The proposed EWMS is used to optimize irrigation for an
indoor greenhouse crop.

Abstract: Rural communities usually settle in territories where crop self-consumption is the main
source of sustenance. In this context, climate change has made these environments of crop control
susceptible to water shortages, impacting crop yields. The implementation of greenhouses has
been proposed to address these problems, together with strategies to optimize water and energy
consumption. In this study, an energy–water management system based on a model predictive
control strategy is proposed. This control strategy consists of a fuzzy optimizer used to determine
the optimal consumption from isolated microgrids considering the local resources available. The
proposed controller is implemented on two timescales. First, medium-term optimization over one
month is used to estimate the necessary water demand required to support crop growth and a high
yield. Second, short-term optimization is used to determine the optimal climate conditions inside the
greenhouse for managing crop irrigation, refilling the reserve water tank, and providing ventilation.
Experiments were conducted to test this approach using a case study of an isolated community.
For such a case, energy consumption was reduced, and the irrigation process was optimized. The
results indicated that the proposed controller is a viable alternative for implementing intelligent
management systems for greenhouses.

Keywords: energy management system; energy–water nexus; predictive control; fuzzy optimization

1. Introduction

In managing the energy–water nexus, modeling the relationships between energy and
water in uncertain scenarios is essential when considering applications in small settlements
that lack proper access to these resources. This is important because the uncertainties
can significantly impact the optimal course of action to maintain the sustainability of the
nexus. For example, climate change can generate weather conditions that produce water
shortages [1], impacting overall crop yields. Additionally, these adverse climate conditions
could increase aquifer water extraction to comply with the demand, thus influencing
the future availability of water resources. Therefore, in these scenarios, a sustainable
management system should incorporate techniques that support efficient water use, such
as the use of recycling or treatment plants. Additionally, the total energy cost should be
minimized. Therefore, the design of an energy–water management system for efficiently
managing the available resources of small settlements should include all characteristics of
the community, especially when greenhouses are established [2].
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In this work, an energy–water management system (EWMS) based on model predic-
tive control (MPC) is proposed for the José Painecura Hueñalihuen Mapuche indigenous
community. This isolated community is located in southern Chile and is affected by con-
nection failures. Additionally, the connection costs with the central Chilean electricity
distribution network are high.

When evaluating the performance of an energy–water nexus, it is crucial to maximize
efficiency and sustainability [3] while also meeting the demands of each system compo-
nent. The physical characteristics of the system, such as the maximum volume of water
storage, photovoltaic power capacity, and crop surface area, can be manipulated to solve
this problem [4]. In [5], a three-layer hierarchical predictive control approach was used for
wastewater management. In this approach, an upper layer performed long-term manage-
ment by sending setpoints to lower layers for short-term actions. In [1], an autonomous
greenhouse irrigation system based on photovoltaic power was designed, and the crop
yield results were better than those in an unmanaged case. In [6], a photovoltaic irrigation
system with no storage tank was considered, and the management system made decisions
based on predefined demand requirements. Although the results showed that the system
met the irrigation demands, the authors did not evaluate the crop yield or the system’s
performance in adverse climate conditions. Some solutions have also been based on nonlin-
ear approaches due to the complexity of these systems. For example, in [7], a photovoltaic
irrigation system without a water storage tank was proposed. The irrigation deficit for vari-
ous crops was handled using a genetic algorithm that minimized the cost of a photovoltaic
plant. Another example was provided by [8], who used a fuzzy control strategy to optimize
PV irrigation for tomato crops according to the estimated water demand.

Some works have also studied the possibility of integrating energy–water management
systems into the overall grid. For example, in the PV system proposed in [9], with the
constraint of minimizing the irrigation deficit, excess energy could be bought or sold to the
overall grid, and a model was trained to minimize energy costs. Finally, in [10], a robust
control approach was used to optimize the performance of a PV irrigation system connected
to an overall grid, where the energy cost and irrigation deficit were minimized considering
a worst-case scenario for the future price of energy from the grid.

Other factors that people should consider in EWMS design include the economic opti-
mization of the system dimensions. Here, the challenge lies in minimizing implementation
and operation costs while complying with the water and energy demands of crops in differ-
ent climate scenarios. The authors of [11] proposed a genetic algorithm solution to optimize
the sizing of PV irrigation systems while minimizing implementation costs and irrigation
deficits. The results displayed better convergence than those of traditional optimizers,
but the optimized system was characterized by low-efficiency energy usage. The authors
of [12] designed a PV irrigation system that was optimized with a genetic algorithm and
considered the irrigation demand, total system cost (implementation and operation), and
income obtained from selling crops based on the total crop yield. The results showed that
the proposed method reduced the overall system size, thereby increasing the economic
feasibility. The authors of [13] proposed a technological-economic optimization model to
minimize the life cycle cost of a PV irrigation system while minimizing the probability of
energy deficiency. Additionally, the authors of [14] applied a centralized MPC to optimize
water and energy considering the relevant water requirements and energy costs. Finally, the
authors of [15] proposed a decision support system that maximized profit by determining
the optimal combination of desalinated and brackish water for irrigation.

Taking into account these previous works, the main contributions of the present work
are as follows:

• Neural networks and phenomenological models are used to predict the climatic
variables that usually affect crop yields.

• A new controller design that integrates elements from energy and water management
systems is proposed. This integrated control strategy is established to control crops in
greenhouses in the short and medium terms.
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• A climate regulator is implemented based on the openness of windows. Notably,
the proposed controller design is based on concepts from model predictive control,
and the optimal control actions are performed. Additionally, the proposed design
includes fuzzy optimization for handling multiple control objectives and constraints
by considering the uncertainty of the predicted climatic variables.

The novelties of this work are as follows:

• The integrated EWMS is applied for the operation of a semiclosed greenhouse. Previ-
ous works only applied EWMSs to open-field crops.

• Fuzzy optimization is included in the designed model predictive control scheme in the
EWMS. As mentioned above, with fuzzy optimization, the model predictive control
strategy can handle multiple control objectives and constraints, even when the system
is affected by uncertainties.

This paper is structured as follows. Section 2 presents the details of the base methods
considered as the background for the implementation of autoregressive models for the
disturbance signals and the design of the model predictive controller. Section 3 describes
the problem statement for applying the EWMS to greenhouse crops. Section 4 details how
the predictions of the different climate variables that affect the greenhouse are handled.
Section 5 presents the formulation of the MPC for implementing the EWMS over the
short and medium terms. Section 6 describes the case study considered in this research,
and Section 7 provides the corresponding simulation results. Finally, this work ends with
Section 8, where the main conclusions based on the simulation results are discussed.

2. Background

The control strategy designed for implementing the EWMS relied on previous concepts
from three frameworks: neural network modeling, model predictive control, and fuzzy
optimization. The main concepts for each framework are presented below.

2.1. Neural Networks

A neural network predictive model is based on an autoregressive prediction strategy
that uses artificial intelligence for modeling signals and systems. This model was selected
because of its known characteristics as a universal approximator and its acceptable accuracy
when predicting climate signals with stochastic behavior, as reported in the literature [16].
There are several possible structures for implementing a network; however, a multilayer
perceptron (MLP) was considered in this work. This structure consists of two layers
(a hidden layer and an output layer). The final output of this network is given by the
following equation:

ŷ(zk) =
Nh

∑
j=1

wj f

(
Nz

∑
i=1

wijz
(i)
k + bj

)
+ b (1)

where ŷ(zk) is the net output for input zk; Nh and Nz are the numbers of neurons in the
hidden and input layers, respectively; wij and wj are the weights of the connections between
input neuron i and hidden neuron j and hidden neuron j and the output neuron, respec-
tively; bj and b are biases related to hidden neuron j and the output neuron, respectively;
and, finally, f is the activation function.

2.2. Model Predictive Control

The EWMS design presented in this work is based on model predictive control (MPC).
Notably, MPC has been used in the literature to improve the operation of systems based on
optimizing future system behavior in regard to future control actions [17]. For this controller
design, a discrete-time model of the system is required to predict future behavior. The future
control actions {u(k), u(k + 1), . . . , u(k + Nu − 1)} are then determined by optimizing an
objective function with constraints for the manipulated and controlled variables. Then,
only the first action u(k) of the optimal future control is applied during the current time
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step. In the next time step, a new optimal sequence is obtained (rolling horizon). In general,
the MPC optimization problem solved at each instant is given by:

min
u(k),...,u(k+Nu−1)

Ny

∑
j=1

Fy(ŷ(k + j), r(k + j)) + λ
Nu

∑
j=1

Fu(u(k + j− 1)) (2)

s.t. ŷ(k + j) = f (ŷ(k + j− 1) . . . , u(k + j− 1), . . . , ), j = 1, . . . , Ny (3)

where ŷ(k + j) is the j-step-ahead prediction for the controlled variable, which is given by
nonlinear prediction model f . Additionally, Fy is the cost associated with the predicted
output, r(k + j) is the reference value for the controlled variable , Fu is the cost associated
with the control action, and λ is the weighting factor. Finally, Ny and Nu are the prediction
and control horizons, respectively.

2.3. Fuzzy Optimization

Fuzzy optimization is an optimization strategy that uses fuzzy logic to evaluate the
performance of the objective function. This methodology was selected because it allows
the MPC to fully consider the control objectives and constraints. Additionally, with fuzzy
optimization, the MPC can consider the uncertainty associated with predicting the climatic
variables. An example of its use was provided by [18]. When applied to MPC functions,
Fy and Fu take the form of the complements to the membership functions. The MPC
objective can be expressed as follows:

min
u(k),...,u(k+Nu−1)

Ny

∑
j=1

(µ̄y(ŷ(k + j)− r(k + j)))p +
Nu

∑
j=1

(µ̄u(∆u(k + j− 1)))p (4)

s.t. ŷ(k + j) = f (ŷ(k + j− 1) . . . , u(k + j− 1), . . . , ), j = 1, . . . , Ny (5)

where µ̄y and µ̄u are complements for membership functions related to the tracking error
and the control action, respectively.

3. Problem Statement

Achieving proper water and energy rationing is a relevant problem that must be
overcome during the implementation of crop control systems in greenhouses. Additionally,
the effects of climate change and trends in water scarcity must be considered, as they vary
between different regions of the world. Therefore, to improve the operation of greenhouse
systems, a control strategy that supports the optimal management of water and energy
resources is proposed. Specifically, an integrated EWMS was designed based on MPC,
and energy and water use were assessed from two temporal perspectives: a short-term
perspective in which energy consumption is optimized for the next two days, and a
medium-term perspective in which the water is managed for the next 28 days.

As shown in Figure 1, the water available for daily irrigation comes from a water tank
installed in the greenhouse. Thus, for the medium-term objective associated with the WMS,
the system controls the reference value for daily irrigation V̄, which must be set by the
controller based on the expected volume of water stored in the tank VTank, the amount of
water lost via evapotranspiration, and the previous amount of irrigated water Virr used.

Moreover, in the short term, the controller needs to optimize energy use to maintain
proper climate conditions (such as temperature Tgr and humidity HRgr) to grow crops.
In the greenhouse system used in this work, the controller requires electrical energy to
operate the different actuators available, such as for the water pump used to refill the tank
Recpump (binary variable—0 for closed and 1 for open); perform valve regulation to control
the amount of water used for irrigation I (continuous variable—0 for no irrigation and
1 for irrigation for a full sample time); and control the openness of windows Ws (binary
variable—0 for closed and 1 for open). Here, all the energy necessary to operate this
system comes from a photovoltaic system with a battery backup subsystem installed in
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the greenhouse. Thus, the short-term goal of the controller is to comply with the water use
requirements at the medium-term scale while maintaining appropriate climate conditions
and safe values of the state of energy SoE to ensure an optimized battery lifespan.

Figure 1. EWMS diagram.

Due to the stochastic behavior of the external climate conditions, the optimal man-
agement of future water use requires the proper characterization of the air temperature
Text, solar irradiance Ir, and external humidity HRgr. In this work, neural networks were
used to provide information to the controller about future scenarios and climate conditions.
Wind speed uext was also needed to implement this controller; however, due to the high
uncertainty associated with the future values of this signal and the limited amount of
data available for running models, a moving average for predictions in the short term
was adopted. Then, the optimal management of water and energy use was realized by
running two model predictive controls: one for the short-term objectives and another
for the medium-term water management objectives. For both MPC blocks, the internal
variables of the greenhouse were considered by using approximations of the relevant
phenomenological models available in the literature, and the ground temperature Tss was
required in these models.

As shown in Figure 1, the prediction of the climate conditions at both the medium and
short terms plays an essential role in supporting the management of available resources for
the greenhouse. In the next section, the strategies used to predict the internal and external
climate conditions are explained in detail.

Below, we summarize the controllers presented in Figure 1. Short-term climate predic-
tion uses meteorological data from outside (Text, RHext, uext, and Ir) and inside (Tgr, RHgr,
and Tss) the greenhouse, as well as the window openness (Ws), to generate meteorological
data for the next two days every ten minutes. On the other hand, medium-term climate
prediction uses this information to generate daily meteorological data for the next 28 days
each day. Short-term climate prediction is used by the climate controller for short-term
management to set future values of window openness for the next two days, while medium-
term prediction is used by the medium-term WMS to determine daily irrigation volumes
(V̄) for the next 28 days. Given the irrigation objective and estimates of future window
openness based on meteorological data, the pump and irrigation controller (EMS) decides
when and how much to irrigate (I) and when to activate the pump (Recpump) for the next
48 h while considering the availability of water VTank and energy SoE. At the end of a day,
the short-term management systems report back to the medium-term WMS the amount of
water that was used for irrigation during the day.

4. Climate Predictions

As mentioned in Section 3, the control design proposed in this work considers short-
and medium-term predictions. First, the short-term forecast of the weather conditions for
the next 48 h is used to operate the EMS, with a sample time of 10 min. Then, the medium-
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term prediction spans the next 28 days, with a sample time of 1 day. These medium-term
predictions are used to manage the WMS, which provides the water levels that are used
later by the short-term manager for irrigation.

4.1. Short-Term Climate Prediction

From the short-term perspective, predicting future climate conditions is a crucial
part of the EMS, because the internal weather in the greenhouse affects both the irriga-
tion constraints and the control objective. Therefore, these variables can be classified into
two categories: external and internal. The external variables associated with the weather
outside the greenhouse are solar radiation, wind speed, external temperature, and external
relative humidity. Additionally, the internal variables correspond to the greenhouse tem-
perature, relative humidity, and subterranean temperature. In this work, different strategies
were used to predict the internal and external variables, and they are explained below.

4.1.1. Prediction of External Climatic Variables

Neural network models were considered for predicting the future climate conditions
outside the greenhouse. The training procedure for these models was implemented with
meteorological data, such as historical measurements of ambient temperature Text, relative
humidity HRext, and solar irradiance Ir. Then, for each of those climatic signals, a different
neural network was trained so that the controller had an independent model available for
each variable.

The networks were designed to use up to 144 regressors (equivalent to 1 day of
information). Each network was designed with a total of two layers: one hidden and one
output layer. In the case of the hidden layer, a minimum of 40 neurons and a maximum of
200 neurons were considered.

Based on the future values predicted for the external climate conditions with the
neural networks, the proposed method could be applied to estimate the internal climatic
variables for the greenhouse with the strategy explained in the next subsection.

4.1.2. Prediction of Internal Climatic Variables

Phenomenological equations and the predictions of the external variables provided
by the neural networks were used to predict the internal climatic variables that affect
short-term greenhouse behavior. This was carried out because the greenhouse did not
contain instrumentation that could provide real climate data inside the greenhouse, so a
phenomenological model was used to represent their behavior. The model was based on
the gain and loss in heat and water vapor, similar to the models used in [19–21]. The model
considered in this work was based on that used in [22,23], where the relationship between
the temperature in the greenhouse Tgr, the underground temperature Tss, and the absolute
humidity Xgr was established considering heat and water vapor exchange. However,
this equation could not be applied directly in the control system, because the controller
proposed in this work required predictions with a large sampling time ∆t. The precision of
the predictions would be low if the phenomenological model was applied with the same
sampling step as the controller. Therefore, to avoid a loss in accuracy, the phenomenological
model was used with the sampling time ∆ts, such that J = ∆t

∆ts
∈ Z. Therefore, the dy-

namics of each internal climatic condition were encompassed by the auxiliary variables
Taux

gr , Taux
ss , and Xaux

gr , which were used to obtain the values Tgr, Tss, and Xgr required by
the controller. The auxiliary variables represent estimated values of the greenhouse temper-
ature, ground temperature, and greenhouse absolute humidity based on samples. Thus,
the phenomenological model used in this work for the internal temperatures is defined as:
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Taux
gr

(
k +

j
J

)
= Taux

gr

(
k +

j− 1
J

)
+ ∆ts ·

Qt

(
k + j−1

J

)
(

ρair · cpa +
Xgr

(
k+ j−1

J

)
·cpv

1000

)
Vgr

, (6)

Taux
ss

(
k +

j
J

)
= Taux

ss

(
k +

j− 1
J

)
+ ∆ts ·

Qg

(
k + j−1

J

)
AgLsscpgρg

, (7)

where j ∈ [1, · · · , J] is the index of the intermediate steps used to calculate the auxiliary
variables available within a given sampling time. In Equation (6), the value Qt is the heat
exchanged, which is computed as:

Qt

(
k + j−1

J

)
= Qrad

(
k + j−1

J

)
−Qcc

(
k + j−1

J

)
−Qren

(
k + j−1

J

)
...

−Qg

(
k + j−1

J

)
−Qevap

(
k + j−1

J

)
,

(8)

where Qrad is the heat gained via radiation in W, defined as the sum of the solar radiation
that enters the greenhouse Rsol and the thermic radiation from the greenhouse’s structure
Rter. Qcc is the heat exchange via conduction and convection, which is defined as:

Qcc(k) = Acu ·Ucc(k) ·
(
Tgr(k)− Text(k)

)
, (9)

with Acu being the area of the external surface of the greenhouse structure, Ucc the con-
vective heat transfer coefficient, Tgr the temperature inside the greenhouse, and Text the
temperature measured outside.

Additionally, in Equation (8), Qren is the heat exchange related to air renovation,
which is represented by the following relationship between the temperature (Tgr, Text) and
humidity (Xgr, Xext) measured inside and outside the greenhouse:

Qren(k) = C1(Tgr(k)− Text(k)) + C2(Xgr(k)− Xext(k))
+C3

(
Xgr(k)Tgr(k)− Xext(k)Text(k)

) , (10)

where {C1, C2, C3} are constants determined by the air renovation rate and the characteris-
tics of the greenhouse, following the equations described in [22]. Qg is the heat exchange
with the ground, which is described by:

Qg(k) = Kg · Ag ·
(Tgr(k)−Tss(k))

Lss
, (11)

where Kg is the ground thermal conductivity, Ag is the area of the ground surface in the
greenhouse in m2, and Lss is the depth of temperature measurements in the soil. Finally,
Qevap is the heat loss from evapotranspiration, represented by:

Qevap(k) =
∑

Crops
c=1 λoETpc (k)Ac

3600
, (12)

with λo being the latent heat of water, ETpc the potential evapotranspiration of crop c,
and Ac the corresponding crop’s area.

Additionally, in Equations (6) and (7), the constants ρair and ρg are the air and soil
densities in kg/m3, respectively; cpa, cpv, and cpg denote the specific heat of dry air, water
vapor, and the soil in J kg−1K−1, respectively; and, finally, Vgr is the air mass volume in
the greenhouse.
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The phenomenological model used for internal humidity Xgr estimation is defined as:

Xaux
gr

(
k +

j
J

)
= Xaux

gr

(
k +

j− 1
J

)
+ ∆ts · dX

(
k +

j− 1
J

)
, (13)

dX
(

k +
j− 1

J

)
= −dXren

(
k +

j− 1
J

)
+ dXevap

(
k +

j− 1
J

)
− dXc

(
k +

j− 1
J

)
, (14)

where dX is the total humidity variation. Additionally, in (14), dXren corresponds to the
absolute humidity variation via air exchange, which is computed as:

dXren(k) =
Vgr Ren(k)

3600 (Xgr(k)− Xext(k)), (15)

where Ren is the air renovation rate. dXevap represents the absolute humidity variation via
evapotranspiration, which is obtained using:

dXevap(k) =
∑

Crops
c=1 1000ETpc (k)Ac

Vgr3600
(16)

similar to the expression in Equation (12) for the heat loss case. Finally, dXc is the absolute
humidity variation via condensation, which is obtained based on:

dXc(k) =
Ag
Vgr

gc{0.2522e0.0485·Tgr(k))(Tgr(k)− Text(k))− (Xsat
gr (k)− Xgr(k))}, (17)

gc = max
(

0, Pgc
(
Tgr − Tc

) 1
3

)
, (18)

where Pgc is a constant that was computed in [24] based on the area of the greenhouse,
and Tc is the temperature of the greenhouse cover.

At this point, the different models presented above could be used to obtain the climate
predictions necessary for the short-term control of the greenhouse. However, some elements
of the control strategy required medium-term predictions to obtain adequate references for
water use in the greenhouse. In this case, it is not recommended to use the same kind of
model because of the loss in precision when trying to obtain predictions far into the future.
The process of medium-term prediction is described in the following subsection.

4.2. Medium-Term Climate Prediction

The main objective of medium-term climate prediction is to estimate the reference evapo-
transpiration daily for the next 28 days; this is required because these estimates play an impor-
tant role in the WMS, as described in detail in the next section. Here, it was possible to reduce
the needed information to the following variables: net radiation in the greenhouse Rn(k), wind
speed at height z uz(k), maximum greenhouse temperature Tmax(k), minimum greenhouse
temperature Tmin(k), maximum greenhouse relative humidity HRmax(k), and minimum
greenhouse relative humidity HRmin(k). For the first two days, it was possible to reuse the
short-term prediction results; however, for subsequent days, other strategies are used.

To estimate Rn(k), the following equations are used:

Rn(k) =
Rsm(k)

Ag
· 86,400

1,000,000
, (19)

Rsm = As ·
[
Irra(k) ·

(
αgr + τgr · αgc

)]
, (20)

where αgr and τgr are the absorptivity and transmissivity coefficients for the greenhouse
structure, respectively; αgc is the absorptivity coefficient of the crops and soil and is pro-
portional to the amount of ground cover; and Rms is the average radiation inside the
greenhouse on day k. The second term of (19) is a transformation factor that allows Wm−2

to be transformed to MJ m−2day−1; this factor considers the number of seconds in a day
and the conversion factor from units to Mega units. Additionally, Ag and As correspond to
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the area of the greenhouse floor and cover, respectively. In (20), the solar irradiance Irra(k)
is the mean irradiance predicted for day k using a moving average.

A fixed value is used for future wind speed uz(k) and, consequently, u2(k). This value
is calculated as follows:

u2(k) = max
(

Wper f uavg
2 , 0.5

)
(21)

where Wavg is the average openness of windows during simulations, and uavg
2 is the average

wind speed at a height of 2 m.
Finally, the estimated averages for the first two days predicted with the short-term

models are used for the greenhouse temperature and the relative humidity. Thus, the values
Tmin(j), Tmax(j), HRmin(j), and HRmax(j) are fixed for all j ≥ 3 and equal to the average
of values on the first and second days of the prediction horizon (e.g., for j ≥ 3, Tmin(j)
is the average value between Tmin(1) and Tmin(2)). This approach was used because the
predictions provided by the model are less accurate in the medium term than in the short
term due to the high stochasticity of the climatic variables and the limited availability of
data for establishing long-term predictive models.

It was assumed that all of these variables could be regulated with greenhouse climate
control. Therefore, their behavior should be the same across the prediction horizon under
similar conditions.

With the predictive models for the short and medium terms, the greenhouse control
could be established. In the following section, the details of climate control and the energy
and water management systems are provided.

5. Model Predictive Control Strategies for the EWMS

The proposed greenhouse control system comprises three systems at two scales (short
and medium). These three systems are the climate controller, a pump and irrigation
controller (EMS), and a medium-term WMS. All of these systems are operated based on the
solutions to optimization problems and the concepts of model predictive control. Below,
the elements considered for implementing each predictive model controller are presented.

5.1. Short Term

Short-term management is separated into two controllers: the climate controller and
the pump and irrigation controller (EMS). Every ten minutes, the climate controller mini-
mizes its objective function (22) based on meteorological data, external climate predictions,
and the phenomenological model of the greenhouse. Then, the climate controller sends
a projection of the irradiance and greenhouse temperature to the EMS according to the
optimal decision achieved for the openness of the windows. Based on this projection, as
well as the values of resources available (the state of the battery charge and the volume of
water available in the greenhouse tank) and the daily irrigation objective from medium-
term management, the EMS controller minimizes the objective function (23). For both
controllers, the objective functions (22) and (23) were solved in this work using particle
swarm optimization (PSO). A summary of this interaction between the two short-term
controllers is presented in Figure 2.
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Figure 2. Short-term management optimization flow chart, where PSO is used for both optimizations.

5.1.1. Climate Controller

With the predictive climate models presented in Section 4, it was possible to design a
model predictive control strategy for greenhouse climate conditions. This strategy included
a predictive controller with a 48 h horizon to determine the openness of windows in the
future. This design had the advantages of being low-cost and able to appropriately regulate
greenhouse climate conditions.

For the successful regulation of greenhouse conditions, future decisions regarding
the openness of windows (Ws(k) . . . Ws(k + Nu − 1)) were obtained by minimizing the
following fuzzy objective function:

J =
2H
∑

j=1
µ̄

k+j
T

(
Tgr(k + j)− Tre f (k + j)

)2
+ µ̄HR

(
HRgr(k + j)− HRre f (k + j)

)2

+λWs µ̄Ws

(
Nu
∑

j=1
∆Ws(k + j− 1)2

)2

,
(22)

which was defined based on several fuzzy membership functions µ̄ and the concept of
fuzzy optimization [18,25]. In Equation (22), the objective function includes three main
fuzzy membership functions µ̄, which are used to evaluate each of the control objectives
defined. In particular, µ̄T is the optimal range for the greenhouse temperature Tgr around a
given reference value Tre f . The function µ̄HR represents the acceptable range for the differ-
ences between the greenhouse humidity HRgr and the reference value HRre f . The third
membership function µ̄Ws represents the penalization term for the number of changes in
the window state. These three membership functions are used to simultaneously maintain
temperature and humidity at desired values while opening or closing as few windows
as possible.

The trapezoidal shapes of the membership functions for temperature and humidity can
be observed in Figure 3; they were based on the definitions of temperature and humidity
limits for tomatoes presented in [22,26]. These limits were defined for a security zone and
a normal operation zone, and their values are reported in Table 1. To determine which
membership function to use for temperature, the controller considers any instance with
Ir ≥ 100 Wm−2 each day at an hourly scale, and Ir < 100 Wm−2 is used as the reference
condition at night. Moreover, the membership function for window openness is plotted as
a simple sloped line, because linear penalization is sufficient in this case.

Table 1. Greenhouse climate limits.

Min. Security Min. Normal Max. Normal Max. Security

Tgr at day (◦C) 10 22 26 30
Tgr at night (◦C) 10 13 16 30

HRgr (%) 30 55 75 90
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(a) (b)

(c) (d)

Figure 3. Membership functions. (a) Daytime temperature; (b) night-time temperature; (c) relative
humidity; (d) total window change.

5.1.2. Pump and Irrigation Controller (EMS)

Once the ideal climate conditions are achieved inside the greenhouse, it is necessary
to manage the use of water and energy resources in the system. For this objective, the
controller minimizes

J =
3

∑
i=1

Ciδi(k) + λI

Nu

∑
i=1

sign(I(k + i− 1)) + λP

Nu

∑
i=1

max(Pdem(k + i− 1), 0), (23)

to determine when the crop needs irrigation and how long that action has to be applied
within the sample period (10 min). This decision regarding the volume of irrigation is
represented by the variable I(k). Additionally, from the minimization of (23), the model
can determine when to use the pump to refill the water tank Recpump(k).

Three main components related to the conditions in the systems are included in the
objective function (23). The first term is associated with the daily irrigation objective
and is used to penalize the difference between the daily irrigation objective V̄ and the
water used each day for irrigation. This difference is denoted as δ and varies each day.
The values of δ for each possible day within a prediction horizon of 48 h are obtained with
the following equations:

δ1(k) =

[
Virr(k) +

N(k)

∑
j=1

∆tρr I(k + j− 1)

]
− V̄(1), (24)

δ2(k) =
N(k)+H

∑
j=1+N(k)

∆tρr I(k + j− 1)− V̄(2), (25)

δ3(k) =

{
N(k)−H

H

[
∑2H

j=H+N(k)+1 ∆tρr I(k + j− 1)− V̄(3)
]

i f N(k) < H
0 ∼

, (26)

where ρr is the volume of irrigation per second, and N(k) is the first of the prediction
steps j for which an instant k coincides with a day change. Since H represents the number
of prediction steps observed within 24 h, the predictions N(k) + k and N(k) + H + k
are always associated with the first instant of a day. Additionally, Equations (24)–(26)
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show that the interactions among the objective functions vary each day because of the
daily fluctuations in the irrigation objective V̄(i). For example, in (24), on the first day,
only the next N(k) prediction steps and the volume of water Virr(k) used on that day
up to instant k are considered. Moreover, the third day in (26) is either not or partially
considered, indicating that decision processes do not require information from the full third
day. To compensate for this issue, the adjustment factor N(k)−H

H was added to decrease
the weight of this decision. Additionally, in the first term of the objective function (23),
the penalty parameters Ci are defined as follows:

Ci =

{
Cex si δi(k) ≥ 0,
−Clack si δi(k) < 0,

(27)

where Cex and Clack are the costs of excess and insufficient irrigation, respectively.
The second term in (23) is used to minimize the number of irrigation instances to

avoid the excessive activation/deactivation of the actuators. In addition, the third term is
used to minimize the power Pdem that the system uses to maintain operation. This third
objective was included to ensure the proper functioning of the greenhouse system with
optimal energy use.

At this point in the model predictive control design, monitoring the resource condi-
tions, such as the volume of water in the water tank and the state of the battery charge, was
important for achieving optimal system operation. The volume of water in the water tank
Vtank and the state of the battery energy SoE are expressed as:

Vtank(k + j + 1) = Vtank(k + j) + Recpump(k + j) · ∆t · ρrec − I(k + j) · Ts · ρr, (28)

SoE(k + j + 1) = SoE(k + j)− ∆t · Pbat(k + j)
1000

, (29)

where ρrec is the water volume that the pump recharges per second, and Pbat(k) is the power
that the battery provides (positive value) or receives (negative value) from the system at
each instant k. The value Pbat(k) is estimated with the following equations:

Pbat(k) =

{
ηcharPdem(k) Pdem(k) < 0

Pdem(k)
ηdis

∼ (30)

Pdem(k) =
PpumpRecpump(k)

ηinv
− PSolar(k) (31)

where Ppump(k) and PSolar(k) are the power required to operate the pump and the power
provided by the solar panel at instant k, respectively. Additionally, in Equations (30) and (31),
ηchar and ηdis are the charge and discharge efficiencies of the battery, respectively, which in-
fluence the relationship between Pbat and Pdem. Finally, ηinv is the efficiency value associated
with the power inverter.

In addition to the objectives considered by the controller in the objective function (23),
there were some additional conditions that the MPC had to meet. Specifically, there were
some desired limits associated with the water tank level and the state of the battery energy,
which were included as the following constraints in the optimization problem:

Vtankmin
≤Vtank(k + j) ≤ Vtankmax , (32)

SoEmin ≤SoE(k + j) ≤ SoEmax. (33)

Additionally, a programmable constraint can be included for the activation of the
irrigation valve, represented by the following inequality:

sign(I(k + j)) ≤ Restirrigation(k + j), (34)
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where Restirrigation can be set to 0 when the system needs to stop irrigation. For example,
in this work, Restirrigation was 0 for any instant at which solar irradiance Ir > 100 Wm−2 or
Tgr > 30 ◦C.

At this point, the control strategy design, which was focused on optimizing energy
consumption in the greenhouse system, was complete. Now, the irrigation objective
could be established to control the quantity of energy needed by the system. However,
the reference values for irrigation are flexible and can be changed according to the medium-
term requirements of a given greenhouse. A medium-term water management system was
integrated into the previous controllers to address these requirements, as described below.

5.2. Medium-Term Water Management System

The water management system supports medium-term irrigation management. Medium-
term climate prediction (explained in Section 4.2) is used to obtain predictions of future
climate data inside and outside the greenhouse. Then, these predicted data are used to
calculate the reference evapotranspiration ETo from the Penman–Monteith equation [27]:

ETo =
0.408∆(k)(Rn(k)− G) + γ(k) · Cn

Tgr(k)+237 u2(k) · (es − ea)

∆(k) + γ(k)(1 + Cdu2(k))
, (35)

where G is the soil heat flux, which at a day-scale timestep can be approximated as 0; Rn(k)
is the net radiation observed in the greenhouse; Tgr(k) is the mean greenhouse temperature;
u2(k) is the wind speed at a height of 2 m; es(k) is the mean saturation vapor pressure; ea(k)
is the actual vapor pressure; ∆ is the slope of the saturation vapor pressure–temperature
relationship; γ(k) is the psychrometric constant; and Cn and Cd are ASCE constants that
vary based on the time frame—for a time frame of 1 day, the corresponding values are 900
and 0.34, respectively.

With the reference value for evapotranspiration, the following elements can be calcu-
lated as:

ETp(k) = Kc · ETo(k), (36)

ETa(k) = Ks(k) · Kc · ETo(k), (37)

Ks(k) =

{
TAW−Dr(k)

TAW−RAW(k) i f RAW(k) < Dr(k)
1 ∼

, (38)

RAW(k) = p(k) · TAW, (39)

p(k) = pc + 0.04 · (5− ETp(k)), (40)

where ETp(k) and ETa(k) are the potential evapotranspiration and actual evapotranspi-
ration on day k, respectively; Kc and pc are nondimensional crop-dependent coefficients;
Ks(k) is a coefficient that represents the crop stress due to a lack of water; Dr(k) reflects the
level of root zone depletion; TAW and RAW(k) are the total and readily available volumes
of water, respectively; and p(k) is the fraction of TAW that the crop can extract without
experiencing stress.

The root zone depletion Dr(k) and total available water TAW values are computed
using the following equations:

TAW = 1000 · (θFC − θWP) · Zr, (41)

Dr(k) = Dr(k− 1)− Id(k)− CR(k) + DP(k) + ETp(k), (42)

Dr(0) = 1000 · (θFC − θ0) · Zr, (43)

Id(k) = V̄(k)
1000ηr

pt A
, (44)



Appl. Sci. 2023, 13, 4734 14 of 28

while complying with the condition

0 ≤ Dr(k) ≤ TAW. (45)

In (41)–(44), θFC and θWP are the field capacity and wilting point, respectively. The field
capacity θFC represents the amount of moisture in the soil after the excess water is drained,
and the wilting point θWP is the threshold for the amount of moisture at which any plant
will wilt. θ0 is the average soil water content; Zr is the root depth, estimated through
a linear function depending on the crop type; and Id(k), DP(k), and CR(k) are the total
irrigation, deep percolation, and capillary rise on day k, respectively. Due to the enclosed
nature of the greenhouse, rain and runoff were ignored. I(k) can be calculated using the
irrigation volume V̄(k) on day k, the planted area A, the irrigation efficiency ηr, and the
soil porosity pt.

Based on the equations presented in this subsection for computing evapotranspiration,
the system can be used for medium-term irrigation management, and the minimum amount
of water necessary to maximize the relative yield Yr of crops can be determined. To achieve
this objective, the predictive controller must maximize

J = Yr − γwVr =
28

∏
j=1

[
1− Ky(k + j)

(
1− ETa(k + j)

ETp(k + j)

)] 1
28

−
28

∑
j=1

γw
V̄(k + j)
28V̄max

, (46)

where Ky(h) is the yield response factor, which depends on the stage and crop. The objec-
tive function (46) consists of two factors: the relative yield Yr and the relative water use
Vr. The relative yield is maximized when the relative evapotranspiration ETa equals the
potential evapotranspiration ETp. The controller can achieve this equality by providing
a sufficient volume of water, as expressed in Equations (36)–(41). The second factor Vr is
the average of the determined irrigation objectives V̄(k) divided by the maximum amount
of water that the system can use for irrigation in one day V̄max. This maximum value can
be determined based on water availability or the designed irrigation scheme. The yield
factor is calculated as a geometric average to create a penalty for the lowest values, and the
irrigation value is calculated as an arithmetic mean included to minimize total water use.
Both values can reach a maximum of 1 and a minimum of 0, thus allowing them to be
balanced with γw.

Next, the medium-term water management system described above with the proposed
EWMS was applied in a case study, as discussed in detail in the following section.

6. Case Study

In this case study, the proposed energy–water management system was applied to
a greenhouse in the Mapuche indigenous community Jose Painecura Hueñalihuen. This
greenhouse had an area of 60 m2, and its microclimate was regulated by opening and closing
windows. These characteristics were established based on those of a previous greenhouse at
the same location, with windows open during the day and closed at night. The greenhouse
was divided into two sections: the first half was used to test the proposed management
systems, and the second half was manually irrigated by a farmer. The farmer agreed that
tomato cultivation would be implemented in the greenhouse for the testing experiment.

Before implementing the proposed EWMS and performing the on-site experiments,
the EWMS was tested and calibrated in a simulation environment. However, only mete-
orological data measured every 10 minutes at a meteorological station in the time spans
14 June 2019–2 September 2019 and 23 October 2019–11 January 2020 were available.

Climate variables were used in the first round of calibration and testing with the EMS
and WMS. For the EMS, the data were organized into tuples of 144 inputs (regressors)
and 288 outputs (predictions). Then, the dataset was separated into training, validation,
and testing sets with proportions of 60% of the data for training, 20% for validation, and 20%
for testing. In the case of the WMS, the data were divided into two sets spanning 81 days,
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denoted as winter data (14 June 2019 to 2 September 2019) and summer data (23 October
2019 to 11 January 2020). Finally, to analyze the performance of the system, the RMSE and
MAPE were calculated for the predictions in different parts of the prediction horizon (1,
144, and 288 steps for the short term and 1, 14, and 28 days for the medium term).

Two experiments were performed to test the short-term controller. In the first experi-
ment, the performance of the climate control system was compared with that of a standard
MPC and a manual control scheme in two scenarios. The first scenario involved winter
data, and the second scenario involved summer data. In both scenarios, an initial crop age
of 14 days and a total duration of 80 days were used. The references for temperature and
relative humidity used for this experiment were

Tre f (k) =

 24 [◦C] , Ir(k) ≥ 100
[

W
m2

]
14.5 [◦C] , Ir(k) < 100

[
W
m2

] , (47)

HRre f (k) = 65%. (48)

These reference values were determined by choosing the center of the normal zone
of each variable (see Table 1). The MPC used for comparison was based on the following
objective function:

J =
2H

∑
j=1

λ1

(
Tgr(k + j)− Tre f (k + j)

)2
+ λ2

(
HRgr(k + j)− HRre f (k + j)

)2
(49)

+
Nu

∑
j=1

(∆Ws(k + j− 1))2,

where λ1 = 10
1.52 and λ2 = 1

10 . The manual control scheme worked by keeping the windows
open during the day (Ir(k) ≥ 100) and closed during the night Ir(k) < 100. The results
of this experiment were assessed based on the percentage of time for which both the
temperature and humidity were in their security zones (Tsec and Hsec, respectively) and
normal zones (Tnorm and Hnorm, respectively), as defined in Table 1. Another metric used
was the number of times the window state changed #∆Ws.

The second experiment with the short-term controller was carried out to assess its
performance based on a fixed reference. The simulated scenario included the winter data
and an initial crop age of 14 days. During the simulation, the system was used to provide
250 L of irrigation each day, with a minimum tank volume of 200 L. The irrigation volume
was set based on the upper limit of daily irrigation for a full-capacity greenhouse given
the information provided by the farmer (the 500 L tank of the previous greenhouse was
filled every two days). In addition, four metrics were used to evaluate system performance:
reference deviation, the number of battery cycles BC [28], the number of times the pump
was activated #REC, and the average number of times the system performed irrigation per
day. The following formula was used to calculate BC:

BC =
Etot

SoEmax
, (50)

where Etot is the total energy from the battery used during the simulation. The resulting
BC value was compared with that in a case in which all pump activation occurred at night
(and therefore no solar energy was used). Additionally, this simulation was compared with
a manual irrigation scenario in which the 250 L objective was distributed between two
irrigation instances (from 6:00 to 7:30 and from 9:00 to 10:30). In this scenario, the water
tank was refilled whenever the water volume dropped below 200 L, and filling stopped
when the tank began to overflow.

Finally, to test the complete EWMS, three simulations with summer data were per-
formed. All scenarios were performed with the full summer dataset, starting with an initial
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crop age of 14 days. The first scenario was denoted as “manual irrigation”, and the same
manual irrigation scheme described previously was used to irrigate half of the greenhouse,
with the difference being that the daily irrigation objective was 150 L instead of 250 L. This
scenario was designed as an approximation of real manual irrigation based on interviews
with the farmer (estimated daily irrigation of 100 L to 200 L for a half-capacity greenhouse
depending on observable factors). The second scenario was the “EWMS” scenario, and the
proposed EWMS was used to irrigate half of the greenhouse. In this scenario, the minimum
tank volume was set to 200 L. In both cases, the other half of the greenhouse consisted of
crops of the same type and age but without stress. These conditions were only considered
for the greenhouse climate simulation. The final scenario was the “combined scenario”,
in which each half of the greenhouse was irrigated with one of the previous strategies.
In this case, pump activation was managed by the EWMS, and the minimum tank water
volume was 50 L because of the higher demand. To study the controller’s performance in
each scenario, the average daily irrigation, total relative yield Yr, and battery cycle BC were
evaluated. For the third scenario, the irrigation and relative yield were only evaluated for
the half of the greenhouse that was controlled by the EWMS.

7. Simulation Results

The experiments described in Section 6 were performed using the aforementioned
climatic measurements from the greenhouse. The short- and medium-term predictions
are shown below, and the results of the subsequent implementations of the short- and
medium-term controllers are presented for the proposed EWMS.

7.1. Short-Term Climate Prediction

The model performance results for the testing dataset are presented in Table 2. The
maximum values of the results obtained for each variable were used to calculate error
values for comparison. Notably, maximum values were used instead of daily averages
because each climatic variable was strongly affected by the hour of the day. Therefore,
the daily average was less effective for error magnitude quantification than the 10 min
trend of these climatic variables. In the case of the one-step prediction, a low error was
observed when compared with the maximum values; additionally, at 144 and 288 steps,
the error increased, which could be attributed to the intrinsic stochasticity of the variables.

Table 2. Prediction performance based on the test data.

RMSE MAPE (%)

Variable Max 1 step 144 steps 288 steps 1 step 144 steps 288 steps
Text (◦C) 19.205 1.407 2.410 2.755 0.253 15.580 18.620

HRext (%) 99.448 2.946 13.198 11.778 1.220 12.102 11.425
Ir (W m−2) 571.556 36.403 70.079 76.655 14.4 33.163 33.390
uext (m s−1) 9.691 2.178 2.862 3.013 40.251 52.280 55.022

Figure 4 shows the prediction of the climatic variables one day ahead (for 144 prediction
steps). In the case of the predictions made with neural networks (Text, HRext, and Ir), all of
the predicted signals displayed RMSEs below 14% of the maximum value, but the MAPE
values were higher; this was because of the nature of the MAPE, for which a predicted value
was compared with the real value. The difference was especially pronounced for Ir because
of the night values that approached 0. Nevertheless, Figure 4 shows that both Text and
Ir displayed daily dynamics. Additionally, although the neural network model for HRext
displayed dynamic effects similar to those observed for other variables, periods of high
error could be observed. Finally, high RMSE and MAPE values were observed for the wind
speed outside the greenhouse uext, but the trend of the results generally matched the actual
wind dynamics. This result was expected because of the high stochasticity of this variable.
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(a) (b)

(c) (d)

Figure 4. One-day predictions of all the climate variables considered for short-term climate prediction
in the greenhouse. In each graph, the blue line represents the real data measured at the greenhouse,
and the red line shows the corresponding model output. (a) Temperature outside the greenhouse Text;
(b) relative humidity outside the greenhouse RHext; (c) wind speed outside the greenhouse uext;
(d) solar irradiance outside the greenhouse Ir.

7.2. Medium-Term Climate Prediction

To test the performance of each of the proposed models, their predictions were com-
pared with simulated data. This was because the real greenhouse climate data were not
available at the time of this experiment. The simulated data were generated with the green-
house climate model. The performance metrics of each model are presented in Tables 3
and 4, where it can be observed that, in general, the proposed method displayed high
prediction error. The high error was expected due to the complexity of climate prediction
at this time scale (a sampling time of one day and a prediction horizon of 28 days), the high
stochasticity of the involved variables, and the lack of data. This same problem can be
observed in Figures 5 and 6. Another detail that can be observed in the tables is that in
some cases, a low RMSE was paired with a high MAPE because of the limited amount of
data available, resulting in very different samples at the 1-, 14-, and 28-day steps.

Table 3. Results for the winter data.

RMSE MAPE (%)

Variable Average 1 day ahead 14 days ahead 28 days ahead 1 day ahead 14 days ahead 28 days ahead
Tmin (◦C) 10.896 3.017 2.972 2.892 21.3 20.7 22.6
Tmax (◦C) 22.728 10.838 12.808 12.626 43.8 53.4 52.5
HRmin (%) 71.277 9.282 17.420 17.217 10.2 20.3 20.3
HRmax (%) 97.279 11.441 17.516 18.316 9.5 15.4 16.1
up

2
(
m s−1) 0.750 1.177 0.758 0.419 46.5 56.4 54.6

Rn
(

MJ
m2Day

)
5.585 3.091 2.897 3.184 114.1 77.1 68.1

ETo (mm) 1.671 0.628 0.898 0.996 73.5 64.4 57.2
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Table 4. Results for the summer data.

RMSE MAPE (%)

Variable Average 1 day ahead 14 days ahead 28 days ahead 1 day ahead 14 days ahead 28 days ahead
Tmin (◦C) 13.4191 2.935 2.880 2.408 17.5 15.9 13.1
Tmax (◦C) 31.848 19.664 20.062 18.026 54.7 60.2 56.9
HRmin (%) 65.007 20.13 18.231 13.569 42.8 24.0 16.4
HRmax (%) 93.789 8.868 14.989 17.244 8.2 13.4 15.7
up

2
(
m s−1) 1.472 0.962 1.072 1.417 59.7 46.6 54.2

Rn
(

MJ
m2Day

)
18.030 6.167 4.631 4.845 29.9 25.3 23.7

ETo (mm) 5.395 2.203 1.937 1.799 32.6 30.8 28.2

(a) (b)

(c) (d)

(e) (f)

Figure 5. Fourteen-day predictions of all the climate variables considered for medium-term climate
prediction in the greenhouse. The data considered here correspond only to a simulation using the
winter data. In each graph, the blue line represents the simulated data , and the red line shows the
corresponding predictions. The predictions were output once per day. (a) Minimum greenhouse
temperature Tmin; (b) maximum greenhouse temperature Tmax; (c) minimum greenhouse relative
humidity RHmin; (d) maximum greenhouse relative humidity RHmax; (e) greenhouse wind speed up

2 ;
(f) net radiation in the greenhouse Rn.
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(a) (b)

Figure 6. Comparison between the simulated evapotranspiration data and the corresponding
predictions for both winter and summer. The simulated data are represented here by the blue
line, and the red line shows the evapotranspiration output of the model. (a) Winter data for
evapotranspiration ETo; (b) summer data for evapotranspiration ETo.

In both datasets, one of the best-performing variables was Tmin given the relatively low
error, with results generally matching the real values, as shown in Figure 5a. In addition,
Tmax exhibited one of the highest errors, which corresponded to underestimation, as shown
in Figure 5b. A similar result was observed for HRmin; however, the system tended to
overestimate the values of this variable, as shown in Figure 5d. HRmax led to a similar type
of error as that for Tmax, with the difference being that the error associated with the former
was lower. For wind speed, the constant value up

2 = 0.8003
(
m s−1) was used; this value

was obtained with the formula presented in Equation (21). As expected, the corresponding
error was one of the highest observed. Figure 5e indicates that for the winter data, the real
values approached the minimum wind speed value recommended by the FAO for long
periods [27]. For Rn, Figure 5f illustrates that the system effectively simulated the general
trend of the actual values but failed to capture some dynamic variability. Finally, Figure 6a,b
show that the predicted and real values of ETo displayed similar trends. This result might
indicate that enhanced predictions of Rn could improve estimates of ETo and therefore
improve the overall performance of the model, as the main objective of this prediction was
to obtain future values of ETo. Thus, additional real data should be collected to improve the
performance of the models. However, it is possible for the WMS to still function correctly
given the corrective nature of the closed-loop MPC.

7.3. Short-Term Management: Window Controller for Climate Control

The proposed climate control scheme was tested in three scenarios using the winter
and summer data. The results of the proposed fuzzy controller (MPCF) and the MPC
are presented in Table 5 and Figures 7–9. The metrics Tnor% and Hnor% represent the
percentages of time for which the temperature and humidity were in their normal zones,
respectively, and Tsec% and Hsec% represent the percentages of time for which the tempera-
ture and humidity were in their security zones. For both datasets, the system maintained
the temperature in the security zone over 95% of the time in contrast to the manual control,
for which temperatures were in the security zone only 77% of the time in winter. However,
in all cases, the system exhibited problems controlling the humidity of the greenhouse,
with the worst performance observed for the winter data. Based on Tnor% and Hnor%,
the controller performed best when controlling the temperature in the winter case and
the humidity in the summer case. Here, it is important to note that based on the local
farmer’s experience, there were some cases when the climatic conditions effectively reached
a dangerous range of values for temperature and humidity in the real greenhouse. Thus,
the crops could survive in these extreme conditions only if they lasted for a short period of
time. Additionally, the results reported in Figures 7 and 8 were obtained from a greenhouse
model that could not be validated with real data (because of the lack of proper instrumenta-
tion inside the greenhouse), so it was not possible to confirm the magnitude of the security
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zone violations observed. However, despite the problem of model validity, the simulations
presented here still provide a guide for how resources could be allocated in these situations.

Table 5. Climate control results.

Data Controller Tsec% Hsec% Tnor% Hnor% #∆Ws

Summer
MPCF 95.37 83.61 26.14 20.94 1937
MPC 96.04 76.96 42.05 16.35 1895

Manual 98.98 60.04 31.99 11.92 230

Winter
MPCF 97.27 67.21 38.13 8.98 1216
MPC 98.35 66.09 44.81 7.76 640

Manual 77.16 43.75 7.47 6.88 280

(a) (b)

Figure 7. Temperature obtained inside the greenhouse during the simulations. Both results were
compared with the values in the corresponding normal and security zones defined for this climatic
variable. These simulation results were obtained using climate data from the winter and summer
seasons. (a) Temperature inside the greenhouse Tgr when using winter data; (b) temperature inside
the greenhouse Tgr when using summer data.

(a) (b)

Figure 8. Relative humidity obtained inside the greenhouse during the simulations. Both results were
compared with the values in the corresponding normal and security zones defined for this climatic
variable. These simulation results were obtained using climate data from the winter and summer
seasons. (a) Relative humidity inside the greenhouse RHgr when using winter data; (b) relative
humidity inside the greenhouse RHgr when using summer data.

Table 5 shows that both predictive controllers yielded significantly better performance
than manual control in all cases, except for changes in window states and temperature in
summer, which involved a significant reduction in humidity performance. It can also be
observed that the predictive controllers yielded similar results for Tsec% and Hsec% in both
cases, with the only significant differences observed in the summer. The MPCF performed
better in terms of Hsec%. Additionally, the MPC performed better for Tnor%, and the MPCF
was superior for Hnor%. This behavior, in conjunction with the previous results, indicated
that the MPC sacrificed humidity performance in favor of temperature regulation.
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(a) (b)

Figure 9. State of the openness of windows obtained during the simulations. Both graphs correspond
to the simulation results obtained when using climate data from the winter and summer seasons.
(a) Window state when using winter data; (b) window state when using summer data.

A final observation that can be made is that in both cases, the window state changed
more during the summer than the winter, and the MPCF resulted in more window changes
than the MPC. From these differences and the performance of the controllers in terms of
temperature and humidity, it can be concluded that the system had some difficulties when
trying to control humidity using the proposed strategy. Moreover, Figure 7a indicates that
the current criteria used to determine day and night conditions might be faulty, and full
days might be considered nights if the weather is very cloudy.

7.4. Short-Term Management: Pump and Irrigation Controller for Implementing the EMS

In the simulation, the proposed system could provide 60 L of water for irrigation every
10 min, and 745.699 W of energy was required to operate the pump. The performance
of both the manual irrigation approach and the EMS during the simulation is presented
in Table 6 and Figures 10 and 11. As shown in Table 6 and Figure 11, both methods
consistently provided the desired amount of water or a similar amount while not violating
any constraints. The compliance with the programmable constraint Restirrigation is not
shown in the results of the tests, because that condition could not be violated, since it
was implemented as a correction of the control action for the EMS and is not relevant for
manual irrigation. Furthermore, a daily average of five irrigation instances was required to
reach the irrigation objective, which coincided with the minimum necessary application.
Considering that the system could provide 60 L of irrigation water every 10 min, this result
should not be compared to the 18 irrigation instances with manual irrigation, as this number
was not related to the greenhouse behavior. Finally, the system required approximately
19.2 battery cycles, which was 0.9 battery cycles less than was used in the manual irrigation
case or a hypothetical scenario in which no solar energy was used for pump activation.

Table 6. EMS performance.

Method RMSE (L) BC #Rec avg#I

Manual 0 20.1038 99 18
EMS 2.0306 19.2096 99 5
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(a) (b)

(c) (d)

Figure 10. Energy and water stored in the greenhouse components during the simulations. These
resource availability results correspond to the values obtained using climate data from the winter
season. Here, the storage limits are represented by black lines. (a) State of energy (SoE) of the battery
in the manual irrigation scenario; (b) water volume stored in the tank Vtank in the manual irrigation
scenario; (c) state of energy (SoE) of the battery in the EMS irrigation scenario; (d) water volume
stored in the tank Vtank in the EMS irrigation scenario.

(a) (b)

Figure 11. Daily irrigation Vr performed during the simulation. This daily irrigation volume,
represented by the blue points, was compared with the values denoted by the red line, indicating
the daily irrigation objective V̄ based on medium-term management. (a) Daily irrigation Vr in the
manual irrigation scenario; (b) daily irrigation Vr in the EMS irrigation scenario.

7.5. Medium-Term Controller: Implementation of the EWMS

Implementing previous short-term controllers required the reference value of the water
volume to be used for irrigation each day V̄, as provided by the EWMS, which operated
as a medium-term controller. As mentioned in Section 6, three scenarios for the medium
term were studied. In one scenario, half of the greenhouse was irrigated manually, while in
the second case, the irrigation was managed by the EWMS. The third scenario combined
both previous cases by having each control scheme irrigate one half of the greenhouse but
having only the EWMS control the pump.
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The results of these simulations are presented in Table 7 and Figures 12 and 13.
In both simulations in which the EWMS was used, the system managed to consume
less water than manual irrigation while maintaining a high relative yield (over 0.986).
Additionally, the EWMS scenarios used significantly less energy than the manual scenario,
with the combined scenario consuming slightly less energy than the sum of the two separate
scenarios. However, in the case of EWMS irrigation, the system did not achieve all of the
daily irrigation objectives. This drawback could have been due to the higher daily objectives
compared to those used in the previous test; additionally, the EWMS irrigation case had a
comparatively strict minimum tank volume constraint. Still, the system maintained a high
relative yield, suggesting that it could adapt to adverse situations. A final observation was
that the system did not provide irrigation on some days. This issue may lead to a lack of
adoption in communities that usually irrigate daily.

Table 7. EWMS performance.

Manual Irrigation EWMS Combined Irrigation

Avg. daily irrigation 150 L 130.5394 L 135.2151 L
Yr = ∏ ETa

ETp
1 0.9867 0.9869

BC 11.1443 7.7927 18.8944

(a) (b)

(c)

Figure 12. Comparison between real and potential evapotranspiration ETa and ETp when considering
different irrigation scenarios. The real evapotranspiration is indicated by blue points, and potential
evapotranspiration is represented by red lines. (a) Real and potential evapotranspiration ETa and ETp

in the EWMS case; (b) real and potential evapotranspiration ETa and ETp in the shared manual
irrigation case; (c) real and potential evapotranspiration ETa and ETp in the combined irrigation case.
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(a) (b)

(c)

Figure 13. Comparison between the daily irrigation Vr and the corresponding objective V̄ for different
irrigation scenarios. The actual irrigation is shown by the blue points, and the corresponding objective
is represented by the red lines. (a) Daily irrigation Vr and the corresponding objective V̄ for the EWMS
irrigation case; (b) daily irrigation Vr and the corresponding objective V̄ for the manual irrigation
case; (c) daily irrigation Vr and the corresponding objective V̄ for the combined irrigation case.

8. Conclusions

The proposed EWMS design presented in this work was based on an MPC for a
greenhouse in a Mapuche indigenous community. The greenhouse design was based on
previous information regarding greenhouses implemented in the community. The designed
system aimed to maximize crop growth while minimizing water use. For this objective,
the system was divided into a water management system (short term) and an energy
management system (medium term).

The short-term climate prediction was based on the temperature, relative humidity
outside the greenhouse, and irradiance dynamics. However, difficulties in predicting wind
speed were observed due to the high stochasticity of this variable.

The medium-term climate prediction model, in general, displayed higher errors in its
predictions than the short-term model. An important detail could be observed concerning
the similarities between the dynamics of net radiation and reference evapotranspiration.
This behavior might indicate that the net radiation is the most important factor in estimating
evapotranspiration in this environment.

The climate system used only the opening/closing of windows to control the green-
house microclimate, as it was based on fuzzy MPC. During the simulations, the system
managed to maintain the temperature inside the greenhouse in the desired range of values
over 95% of the time. On the other hand, the humidity was maintained at the desired value
87% of the time in the best scenario and 67% in the worst case. Another observation was
that compared with manual control, the MPCF provided significantly better temperature
and humidity control, with a performance difference of over 20%, the exception being
the summer temperature, for which the manual control maintained values in the desired
zone only 3% more often. Given that this strategy has worked in previous greenhouses,
the problem of not complying with the control objectives all the time was likely related to
the model’s imprecision; this was further evidenced in the fact that the manual control sim-
ulation, which attempted to replicate the farmer’s strategy, displayed the same difficulties
during the same periods. The results also indicated that humidity was more challenging to
control than temperature when only window openness was controlled.
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The simulation for the EMS showed that the proposed controller could successfully
provide a daily irrigation volume of 250 L in a real implementation scenario. During this
process, the average instances of irrigation in the simulation results were the same as the
minimum values required. The system also used solar energy to save 0.9 battery cycles
compared to the case in which the farmer’s irrigation pattern was simulated.

The final simulation results showed that the system successfully irrigated crops while
reducing water use. In both scenarios that involved the EWMS, the system achieved a relative
yield of over 0.986, reflecting good crop development. The proposed controller produced this
result despite the low precision of the medium-term predictions and the fact that during one
simulation, one of the systems did not achieve the daily irrigation objective because of the
high demand for water and the high minimum volume of stored water. Another observation
was that, contrary to the daily irrigation performed by the community, the system did not
irrigate the greenhouse on certain days. The problem with this is that a system presenting
days that lack irrigation could face difficulties in being adopted by the community.

However, before implementing the system, it is recommended to collect more data
to improve the greenhouse micro-climate estimation with real data from the greenhouse.
It is also recommended to strengthen the medium-term prediction with an emphasis on
predicting net radiation, as this is the most important factor for evapotranspiration.

Future research can expand on this work to consider more types of crops in green-
houses. A different possibility is considering a case in which the system irrigates multiple
greenhouses simultaneously. Alternatively, excess energy from the system could be sold to
the power grid; however, this would sacrifice grid independence. Another possible future
objective would be to adapt the system to scarcity situations, as the current system did not
consider limitations regarding water extraction.
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Abbreviations
The following abbreviations are used in this manuscript:

WMS Water management system
EMS Energy management system
EWMS Energy–water management system
MPC Model predictive control
MPCF Model predictive control based on fuzzy optimization
TAW Total available water
RAW Readily available water
FAO Food and Agriculture Organization of the United Nations
RMSE Root mean square error
MAPE Mean absolute percentage error



Appl. Sci. 2023, 13, 4734 26 of 28

Nomenclature
V̄ Daily irrigation objective (m3)
Vtank Water volume in tank (m3)
Virr Volume of irrigated water (m3)
Tgr Temperature inside the greenhouse (◦C)
HRgr Relative humidity inside the greenhouse (%)

Recpump Pump activation decision ∈ (0, 1)
Ws Openness of windows ∈ {0, 1}
SoE State of energy (kJ)
Text Temperature outside the greenhouse (◦C)
HRext Relative humidity outside the greenhouse (%)

Ir Solar irradiance (W m−2)

uext Wind speed outside the greenhouse (m s−1)

Tss Greenhouse ground temperature (◦C)
Xgr Absolute humidity (g m−3)

∆ t Sampling time (s)
∆ts Model sampling time (s)
Qrad Heat gain via radiation (W)
Qcc Heat via conduction and convection (W)
Qren Heat exchange via air renovation (W)
Qg Heat exchange with ground (W)
Qevap Heat loss via evapotranspiration (W)
ρair Air density (kg m−3)
ρg Soil density (kg m−3)
cpa Specific heat of dry air (J kg−1K−1)
cpv Specific heat of water vapor (J kg−1K−1)
cpg Specific heat of the soil (J kg−1K−1)
Vgr Greenhouse volume (m3)
Ag Greenhouse ground area (m2)
As Greenhouse cover area (m2)
Lss Soil temperature measurement depth (m)
dXren Humidity exchange via air renovation (g s−1m−3)
dXevap Humidity gain via evapotranspiration (g s−1m−3)
uz Wind speed (m s−1) at height z (m)
µz Membership function for value z
µ̄z Inverse membership function for value z
ρr Irrigation caudal (m3s−1)
Pdem Battery power required by the system (W)
Pbat Power given/received by the battery (W)
Ppump Power required by the pump (W)
PSolar Power generated by the solar panel (W)
etachar Battery charge efficiency
etadis Battery discharge efficiency
etainv Inversor efficiency
I Irrigation decision ∈ (0, 1)
Restirrigation Custom irrigation restriction ∈ {0, 1}
BC Battery cycles
Rn Net radiation in the greenhouse (MJ m−2Day−1)
A Planted area (m2)
αgr Greenhouse absorptivity coefficient
τgr Greenhouse transmissivity coefficient
αgc Absorptivity coefficient of crops and soil
uavg

2 Average wind speed in (m s−1) at 2 (m)
Wper f Average openness ∈ (0, 1)
ETo Reference evapotranspiration (mm day−1)
ETp Potential evapotranspiration (mm day−1)
ETa Actual evapotranspiration (mm day−1)
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G Soil heat flux (MJ m−2Day−1)
es Mean saturation vapor pressure (kPa)
ea Actual saturation vapor pressure (kPa)
γ Psychrometric constant (kPa ◦C−1)
Dr Root zone depletion (mm)
TAW Total available water (mm)
RAW Readily available water (mm)
θFC Field capacity
θWP Wilting point
θ0 Average water content in soil
Zr Root depth (m)
Id Total daily irrigation (mm)
DP Deep percolation (mm)
CR Capillary rise (mm)
ηr Irrigation efficiency
pt Soil porosity
Yr Relative yield
Ky Yield response factor
Rsm Mean total radiation in the greenhouse (W m−2)

∆ Saturation vapor pressure–temperature slope (kPa ◦C−1)
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